Estimation of firing rate from instantaneous interspike intervals.

IF 2.4 4区 医学 Q3 NEUROSCIENCES
Lubomir Kostal, Kristyna Kovacova
{"title":"Estimation of firing rate from instantaneous interspike intervals.","authors":"Lubomir Kostal, Kristyna Kovacova","doi":"10.1016/j.neures.2024.06.006","DOIUrl":null,"url":null,"abstract":"<p><p>The rate coding hypothesis is the oldest and still one of the most accepted hypotheses of neural coding. Consequently, many approaches have been devised for the firing rate estimation, ranging from simple binning of the time axis to advanced statistical methods. Nonetheless the concept of firing rate, while informally understood, can be mathematically defined in several distinct ways. These definitions may yield mutually incompatible results unless implemented properly. Recently it has been shown that the notions of the instantaneous and the classical firing rates can be made compatible, at least in terms of their averages, by carefully discerning the time instant at which the neuronal activity is observed. In this paper we revisit the properties of instantaneous interspike intervals in order to derive several novel firing rate estimators, which are free of additional assumptions or parameters and their temporal resolution is 'locally self-adaptive'. The estimators are simple to implement and are numerically efficient even for very large sets of data.</p>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neures.2024.06.006","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The rate coding hypothesis is the oldest and still one of the most accepted hypotheses of neural coding. Consequently, many approaches have been devised for the firing rate estimation, ranging from simple binning of the time axis to advanced statistical methods. Nonetheless the concept of firing rate, while informally understood, can be mathematically defined in several distinct ways. These definitions may yield mutually incompatible results unless implemented properly. Recently it has been shown that the notions of the instantaneous and the classical firing rates can be made compatible, at least in terms of their averages, by carefully discerning the time instant at which the neuronal activity is observed. In this paper we revisit the properties of instantaneous interspike intervals in order to derive several novel firing rate estimators, which are free of additional assumptions or parameters and their temporal resolution is 'locally self-adaptive'. The estimators are simple to implement and are numerically efficient even for very large sets of data.

从瞬时间隔估算发射率
速率编码假说是最古老的神经编码假说,也是目前最被接受的假说之一。因此,人们设计了许多方法来估计发射率,从简单的时间轴分档到先进的统计方法,不一而足。然而,尽管对发射率的概念有非正式的理解,但在数学上却有几种不同的定义。这些定义如果不能正确执行,可能会产生互不兼容的结果。最近的研究表明,通过仔细辨别观察神经元活动的时间瞬间,可以使瞬时发射率和经典发射率的概念相容,至少就其平均值而言是如此。在本文中,我们重新审视了瞬时棘间间隔的特性,从而推导出几种新的发射率估计器,它们不需要额外的假设或参数,其时间分辨率是 "局部自适应 "的。这些估计器的实现非常简单,即使在数据量非常大的情况下也能有效计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience Research
Neuroscience Research 医学-神经科学
CiteScore
5.60
自引率
3.40%
发文量
136
审稿时长
28 days
期刊介绍: The international journal publishing original full-length research articles, short communications, technical notes, and reviews on all aspects of neuroscience Neuroscience Research is an international journal for high quality articles in all branches of neuroscience, from the molecular to the behavioral levels. The journal is published in collaboration with the Japan Neuroscience Society and is open to all contributors in the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信