Intrinsically synthesized melatonin in mitochondria and factors controlling its production.

IF 2.5 4区 生物学 Q3 CELL BIOLOGY
Histology and histopathology Pub Date : 2025-03-01 Epub Date: 2024-06-07 DOI:10.14670/HH-18-776
Russel J Reiter, Ramaswamy N Sharma, Luiz Gustavo de Almieda Chuffa, Danilo Grunig Humberto da Silva, Sergio Rosales-Corral
{"title":"Intrinsically synthesized melatonin in mitochondria and factors controlling its production.","authors":"Russel J Reiter, Ramaswamy N Sharma, Luiz Gustavo de Almieda Chuffa, Danilo Grunig Humberto da Silva, Sergio Rosales-Corral","doi":"10.14670/HH-18-776","DOIUrl":null,"url":null,"abstract":"<p><p>The percentage of the total amount of melatonin produced in vertebrates that comes from the pineal is small (likely <5%) but, nevertheless, functionally highly noteworthy. The significance of pineal melatonin is that it is secreted cyclically such that it has a critical function in influencing not only the suprachiasmatic nucleus but clock genes that reside in perhaps every cell throughout the organism. Extrapineal melatonin, which may be synthesized in the mitochondria of all other cells in much larger amounts than that in the pineal gland has a different function than that derived from the pineal gland. Its synthesis is not circadian and it is not directly impacted by the photoperiodic environment. Also, melatonin from the extrapineal sites is not normally secreted into the blood stream; rather, it acts locally in its cell of synthesis or, possibly via paracrine mechanisms, on immediately adjacent cells. The functions of extrapineal melatonin include central roles in maintaining molecular and redox homeostasis and actions in resisting pathological processes due to its ability to directly or indirectly detoxify free radicals. The vast majority of organisms that exist on Earth lack a pineal gland so pineal-derived melatonin is unique to vertebrates. Evidence suggests that all invertebrates, protists and plants synthesized melatonin and they have no pineal homolog; thus, the production of melatonin by extrapineal cells in vertebrates should not be unexpected. While the factors that control pineal melatonin synthesis are well documented, the processes that regulate extrapineal melatonin production are undefined.</p>","PeriodicalId":13164,"journal":{"name":"Histology and histopathology","volume":" ","pages":"271-282"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histology and histopathology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.14670/HH-18-776","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The percentage of the total amount of melatonin produced in vertebrates that comes from the pineal is small (likely <5%) but, nevertheless, functionally highly noteworthy. The significance of pineal melatonin is that it is secreted cyclically such that it has a critical function in influencing not only the suprachiasmatic nucleus but clock genes that reside in perhaps every cell throughout the organism. Extrapineal melatonin, which may be synthesized in the mitochondria of all other cells in much larger amounts than that in the pineal gland has a different function than that derived from the pineal gland. Its synthesis is not circadian and it is not directly impacted by the photoperiodic environment. Also, melatonin from the extrapineal sites is not normally secreted into the blood stream; rather, it acts locally in its cell of synthesis or, possibly via paracrine mechanisms, on immediately adjacent cells. The functions of extrapineal melatonin include central roles in maintaining molecular and redox homeostasis and actions in resisting pathological processes due to its ability to directly or indirectly detoxify free radicals. The vast majority of organisms that exist on Earth lack a pineal gland so pineal-derived melatonin is unique to vertebrates. Evidence suggests that all invertebrates, protists and plants synthesized melatonin and they have no pineal homolog; thus, the production of melatonin by extrapineal cells in vertebrates should not be unexpected. While the factors that control pineal melatonin synthesis are well documented, the processes that regulate extrapineal melatonin production are undefined.

线粒体中内在合成的褪黑激素及其生产控制因素。
脊椎动物体内产生的褪黑激素总量中,来自松果体的比例很小(可能是
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Histology and histopathology
Histology and histopathology 生物-病理学
CiteScore
3.90
自引率
0.00%
发文量
232
审稿时长
2 months
期刊介绍: HISTOLOGY AND HISTOPATHOLOGY is a peer-reviewed international journal, the purpose of which is to publish original and review articles in all fields of the microscopical morphology, cell biology and tissue engineering; high quality is the overall consideration. Its format is the standard international size of 21 x 27.7 cm. One volume is published every year (more than 1,300 pages, approximately 90 original works and 40 reviews). Each volume consists of 12 numbers published monthly online. The printed version of the journal includes 4 books every year; each of them compiles 3 numbers previously published online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信