Optimizing Length Scalability of InGaZnO Thin-Film Transistors through Lateral Carrier Profile Engineering and Negative ΔL Extension Structure

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Su Hyun Kim, Mingoo Kim, Ji Hwan Lee, Kihwan Kim, Joon Seok Park, Jun Hyung Lim, Saeroonter Oh
{"title":"Optimizing Length Scalability of InGaZnO Thin-Film Transistors through Lateral Carrier Profile Engineering and Negative ΔL Extension Structure","authors":"Su Hyun Kim,&nbsp;Mingoo Kim,&nbsp;Ji Hwan Lee,&nbsp;Kihwan Kim,&nbsp;Joon Seok Park,&nbsp;Jun Hyung Lim,&nbsp;Saeroonter Oh","doi":"10.1002/aelm.202400012","DOIUrl":null,"url":null,"abstract":"<p>The lateral carrier profile of amorphous indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) plays a significant role in determining the effective channel length (<i>L</i><sub>eff</sub>) and length scalability even when the physical gate length (<i>L</i><sub>g</sub>) is the same. Especially, devices with high carrier concentration that have a high mobility of 14.54 cm<sup>2</sup> V·s<sup>−1</sup> suffer from severe short channel effects at <i>L</i><sub>g</sub> = 1 µm due to the reduced <i>L</i><sub>eff</sub>. The current work proposes a systematic methodology for optimizing length scalability for a given <i>L</i><sub>g</sub> that involves engineering of the lateral carrier profile. Unique lateral carrier profiles are extracted using contour maps of Δ<i>L</i> and <i>R</i><sub>SD</sub> as a function of carrier profile parameters, and they are validated by comparing the measured <i>L</i><sub>eff</sub>, drain-to-source resistance, and current-voltage characteristics with the results of simulations using the extracted carrier profiles. Further, to overcome the trade-off between enhanced mobility and degraded <i>V</i><sub>T</sub> roll-off that occurs with increasing carrier concentration, an IGZO TFT with gate-insulator shoulders is fabricated to structurally form negative Δ<i>L</i> and physically increase <i>L</i><sub>eff</sub>, while also obtaining a high carrier concentration, ultimately achieving both optimal electrical performance, with mobility of 17.50 cm<sup>2</sup> V·s<sup>−1</sup>, and complete control of the electrostatic integrity of the gate.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"10 10","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202400012","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aelm.202400012","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The lateral carrier profile of amorphous indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) plays a significant role in determining the effective channel length (Leff) and length scalability even when the physical gate length (Lg) is the same. Especially, devices with high carrier concentration that have a high mobility of 14.54 cm2 V·s−1 suffer from severe short channel effects at Lg = 1 µm due to the reduced Leff. The current work proposes a systematic methodology for optimizing length scalability for a given Lg that involves engineering of the lateral carrier profile. Unique lateral carrier profiles are extracted using contour maps of ΔL and RSD as a function of carrier profile parameters, and they are validated by comparing the measured Leff, drain-to-source resistance, and current-voltage characteristics with the results of simulations using the extracted carrier profiles. Further, to overcome the trade-off between enhanced mobility and degraded VT roll-off that occurs with increasing carrier concentration, an IGZO TFT with gate-insulator shoulders is fabricated to structurally form negative ΔL and physically increase Leff, while also obtaining a high carrier concentration, ultimately achieving both optimal electrical performance, with mobility of 17.50 cm2 V·s−1, and complete control of the electrostatic integrity of the gate.

Abstract Image

Abstract Image

通过侧向载流子剖面工程和负 ΔL 延伸结构优化 InGaZnO 薄膜晶体管的长度可扩展性
即使物理栅极长度(Lg)相同,非晶铟镓锌氧化物(IGZO)薄膜晶体管(TFT)的横向载流子剖面在决定有效沟道长度(Leff)和长度可扩展性方面也起着重要作用。特别是具有 14.54 cm2 V-s-1 高迁移率的高载流子浓度器件,在 Lg = 1 µm 时由于 Leff 的减小而受到严重的短沟道效应影响。目前的工作提出了一种系统方法,用于优化给定 Lg 下的长度可扩展性,其中涉及横向载流子剖面工程。使用作为载流子剖面参数函数的 ΔL 和 RSD 等值线图提取了独特的横向载流子剖面,并通过比较测量的 Leff、漏极至源极电阻和电流电压特性,以及使用提取的载流子剖面进行模拟的结果,对其进行了验证。此外,为了克服随着载流子浓度的增加而出现的迁移率增强和 VT 下降之间的权衡问题,还制作了一种具有栅极-绝缘体肩的 IGZO TFT,以在结构上形成负 ΔL 并在物理上增加 Leff,同时还获得了高载流子浓度,最终实现了最佳电气性能(迁移率为 17.50 cm2 V-s-1)以及对栅极静电完整性的完全控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信