Imbalance of the von Willebrand Factor - ADAMTS-13 axis in patients with retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCL-S).
Max Braune, Moritz Metelmann, Jonathan de Fallois, Christian Pfrepper, Alonso Barrantes-Freer, Grit Gesine Ruth Hiller, Susette Unger, Evelyn Seelow, Jan Halbritter, Johann Otto Pelz
{"title":"Imbalance of the von Willebrand Factor - ADAMTS-13 axis in patients with retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCL-S).","authors":"Max Braune, Moritz Metelmann, Jonathan de Fallois, Christian Pfrepper, Alonso Barrantes-Freer, Grit Gesine Ruth Hiller, Susette Unger, Evelyn Seelow, Jan Halbritter, Johann Otto Pelz","doi":"10.1186/s42466-024-00327-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCL-S) is an ultra-rare, autosomal-dominant small vessel disease caused by loss-of-function variants in the gene TREX1. Recently, elevated serum levels of von Willebrand Factor Antigen (vWF-Ag) pointed to an underlying endotheliopathy, and microvascular ischemia was suggested to contribute to the neurodegeneration in RVCL-S. Aim of this study was to further elucidate the endotheliopathy in RVCL-S.</p><p><strong>Methods: </strong>vWF-Ag and ADAMTS-13 activity were repeatedly measured in two patients with genetically confirmed RVCL-S. Renal biopsy of both RVCL-S patients and autoptic brain, renal, hepatic, and pulmonary specimen of one patient with RVCL-S were examined immunohistochemically in comparison to matched controls. In addition, cerebral methylome analysis was performed in the autoptic brain specimen calculating differentially methylated positions compared to controls.</p><p><strong>Results: </strong>While vWF-Ag and activity was strongly elevated, ADAMTS-13 activity was low in RVCL-S and further decreased over the course of the disease. Autoptic brain specimen showed signs of thromboinflammation in cerebral small vessels, and vWF-Ag staining was strongly positive in cerebral and renal small vessels in RVCL-S, while only a light to moderate vWF-Ag staining was found in controls. Cerebral methylome analysis yielded 115 differentially methylated CpGs (p < 0.05) in the deceased RVCL-S patient compared to the eight controls without brain pathology. One of the hypomethylated genes coded for ADAMTS-13 (p = 0.00056).</p><p><strong>Conclusions: </strong>These findings point to an imbalance of the vWF - ADAMTS-13 axis in patients with RVCL-S, that may finally lead to an accumulation of vWF-Ag in renal and cerebral small vessels. Elevated vWF-Ag levels may serve as an early serum marker reflecting disease activity. If confirmed, therapeutic approaches might aim at an inhibition of vWF-Ag or increase of ADAMTS-13 activity in the future.</p>","PeriodicalId":94156,"journal":{"name":"Neurological research and practice","volume":"6 1","pages":"32"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188181/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurological research and practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42466-024-00327-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCL-S) is an ultra-rare, autosomal-dominant small vessel disease caused by loss-of-function variants in the gene TREX1. Recently, elevated serum levels of von Willebrand Factor Antigen (vWF-Ag) pointed to an underlying endotheliopathy, and microvascular ischemia was suggested to contribute to the neurodegeneration in RVCL-S. Aim of this study was to further elucidate the endotheliopathy in RVCL-S.
Methods: vWF-Ag and ADAMTS-13 activity were repeatedly measured in two patients with genetically confirmed RVCL-S. Renal biopsy of both RVCL-S patients and autoptic brain, renal, hepatic, and pulmonary specimen of one patient with RVCL-S were examined immunohistochemically in comparison to matched controls. In addition, cerebral methylome analysis was performed in the autoptic brain specimen calculating differentially methylated positions compared to controls.
Results: While vWF-Ag and activity was strongly elevated, ADAMTS-13 activity was low in RVCL-S and further decreased over the course of the disease. Autoptic brain specimen showed signs of thromboinflammation in cerebral small vessels, and vWF-Ag staining was strongly positive in cerebral and renal small vessels in RVCL-S, while only a light to moderate vWF-Ag staining was found in controls. Cerebral methylome analysis yielded 115 differentially methylated CpGs (p < 0.05) in the deceased RVCL-S patient compared to the eight controls without brain pathology. One of the hypomethylated genes coded for ADAMTS-13 (p = 0.00056).
Conclusions: These findings point to an imbalance of the vWF - ADAMTS-13 axis in patients with RVCL-S, that may finally lead to an accumulation of vWF-Ag in renal and cerebral small vessels. Elevated vWF-Ag levels may serve as an early serum marker reflecting disease activity. If confirmed, therapeutic approaches might aim at an inhibition of vWF-Ag or increase of ADAMTS-13 activity in the future.