{"title":"Design of a low-area hardware architecture to predict early signs of sudden cardiac arrests","authors":"Anusaka Gon, Atin Mukherjee","doi":"10.1016/j.micpro.2024.105082","DOIUrl":null,"url":null,"abstract":"<div><p>Sudden cardiac arrest (SCA) results in an unexpected and untimely death within minutes, and its early prediction can alert cardiac patients to a timely medical diagnosis. To detect early symptoms of an SCA, the detection and classification of ventricular tachycardias (VT) are of utmost importance. In this work, a low-area yet highly accurate hardware architecture for VT classification is proposed based on the detection of premature ventricular contraction (PVC) beats. After pre-processing of the ECG signals using a wavelet-based pre-processing unit, a characteristics-matching algorithm is used to detect the PVC beats, and a low-complexity adaptive decision-based logic classifier is used to classify them into four types of VTs, namely monomorphic, polymorphic, non-sustained VT (NSVT), and sustained VT (SVT). FPGA verification of the hardware architecture for the VT classifier using the Nexys 4 DDR Artix-7 board utilizes 10.4 % of the total available resources and displays the type of VT and the number of PVCs detected to help in determining the severity of SCA and the need for medical attention. The ASIC implementation of the proposed PVC-based VT classification using the SCL 180 nm CMOS technology results in an area overhead of 0.02 mm<sup>2</sup> and a power consumption of 3.47 μW for a high accuracy rate of 98.2 %. When compared to the existing CA detection systems for wearable devices, the proposed one consumes the least area while achieving high detection rates.</p></div>","PeriodicalId":49815,"journal":{"name":"Microprocessors and Microsystems","volume":"109 ","pages":"Article 105082"},"PeriodicalIF":1.9000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microprocessors and Microsystems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141933124000772","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Sudden cardiac arrest (SCA) results in an unexpected and untimely death within minutes, and its early prediction can alert cardiac patients to a timely medical diagnosis. To detect early symptoms of an SCA, the detection and classification of ventricular tachycardias (VT) are of utmost importance. In this work, a low-area yet highly accurate hardware architecture for VT classification is proposed based on the detection of premature ventricular contraction (PVC) beats. After pre-processing of the ECG signals using a wavelet-based pre-processing unit, a characteristics-matching algorithm is used to detect the PVC beats, and a low-complexity adaptive decision-based logic classifier is used to classify them into four types of VTs, namely monomorphic, polymorphic, non-sustained VT (NSVT), and sustained VT (SVT). FPGA verification of the hardware architecture for the VT classifier using the Nexys 4 DDR Artix-7 board utilizes 10.4 % of the total available resources and displays the type of VT and the number of PVCs detected to help in determining the severity of SCA and the need for medical attention. The ASIC implementation of the proposed PVC-based VT classification using the SCL 180 nm CMOS technology results in an area overhead of 0.02 mm2 and a power consumption of 3.47 μW for a high accuracy rate of 98.2 %. When compared to the existing CA detection systems for wearable devices, the proposed one consumes the least area while achieving high detection rates.
期刊介绍:
Microprocessors and Microsystems: Embedded Hardware Design (MICPRO) is a journal covering all design and architectural aspects related to embedded systems hardware. This includes different embedded system hardware platforms ranging from custom hardware via reconfigurable systems and application specific processors to general purpose embedded processors. Special emphasis is put on novel complex embedded architectures, such as systems on chip (SoC), systems on a programmable/reconfigurable chip (SoPC) and multi-processor systems on a chip (MPSoC), as well as, their memory and communication methods and structures, such as network-on-chip (NoC).
Design automation of such systems including methodologies, techniques, flows and tools for their design, as well as, novel designs of hardware components fall within the scope of this journal. Novel cyber-physical applications that use embedded systems are also central in this journal. While software is not in the main focus of this journal, methods of hardware/software co-design, as well as, application restructuring and mapping to embedded hardware platforms, that consider interplay between software and hardware components with emphasis on hardware, are also in the journal scope.