{"title":"An automated consistency management approach for a privacy-aware electric vehicle architecture","authors":"Jonathan Stancke, Christian Plappert, Lukas Jäger","doi":"10.1016/j.micpro.2024.105074","DOIUrl":null,"url":null,"abstract":"<div><p>Modern vehicles contain a number of highly connected embedded systems that generate, store, and process information and exchange it with their environment. Since a large part of this information is privacy-critical, privacy laws such as the GDPR of the European Union apply to it. In this work, we evaluate the privacy-criticality of exemplary data and data flows of the electric driving domain on a reference architecture. We categorize the ECUs of the architecture based on the criticality of the data they process and propose measures and technologies as building blocks that provide adequate privacy protection according to the requirements given by the GDPR.</p><p>To ensure that all requirements are met by the reference architecture, we propose a more principled solution that simplifies the mapping between an architecture and the measures. For this purpose, we propose an architecture description template in JSON and an algorithm for automated consistency checks that outputs the measures and the security extension needed per Electronic Control Unit (ECU) to comply with derived privacy requirements.</p></div>","PeriodicalId":49815,"journal":{"name":"Microprocessors and Microsystems","volume":"109 ","pages":"Article 105074"},"PeriodicalIF":1.9000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0141933124000693/pdfft?md5=e4034fe6211d68785c24aa81ea2401f7&pid=1-s2.0-S0141933124000693-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microprocessors and Microsystems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141933124000693","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Modern vehicles contain a number of highly connected embedded systems that generate, store, and process information and exchange it with their environment. Since a large part of this information is privacy-critical, privacy laws such as the GDPR of the European Union apply to it. In this work, we evaluate the privacy-criticality of exemplary data and data flows of the electric driving domain on a reference architecture. We categorize the ECUs of the architecture based on the criticality of the data they process and propose measures and technologies as building blocks that provide adequate privacy protection according to the requirements given by the GDPR.
To ensure that all requirements are met by the reference architecture, we propose a more principled solution that simplifies the mapping between an architecture and the measures. For this purpose, we propose an architecture description template in JSON and an algorithm for automated consistency checks that outputs the measures and the security extension needed per Electronic Control Unit (ECU) to comply with derived privacy requirements.
期刊介绍:
Microprocessors and Microsystems: Embedded Hardware Design (MICPRO) is a journal covering all design and architectural aspects related to embedded systems hardware. This includes different embedded system hardware platforms ranging from custom hardware via reconfigurable systems and application specific processors to general purpose embedded processors. Special emphasis is put on novel complex embedded architectures, such as systems on chip (SoC), systems on a programmable/reconfigurable chip (SoPC) and multi-processor systems on a chip (MPSoC), as well as, their memory and communication methods and structures, such as network-on-chip (NoC).
Design automation of such systems including methodologies, techniques, flows and tools for their design, as well as, novel designs of hardware components fall within the scope of this journal. Novel cyber-physical applications that use embedded systems are also central in this journal. While software is not in the main focus of this journal, methods of hardware/software co-design, as well as, application restructuring and mapping to embedded hardware platforms, that consider interplay between software and hardware components with emphasis on hardware, are also in the journal scope.