{"title":"On the maximum dimensions of subalgebras of Mn(K) satisfying two related identities","authors":"Paweł Matraś , Leon van Wyk , Michał Ziembowski","doi":"10.1016/j.laa.2024.06.006","DOIUrl":null,"url":null,"abstract":"<div><p>For an arbitrary <span><math><mi>q</mi><mo>≥</mo><mn>2</mn></math></span>, we find an upper bound for the dimension of a subalgebra of the full matrix algebra M<span><math><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo></math></span> over an arbitrary field <em>K</em> satisfying the identity<span><span><span><math><mo>[</mo><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo><mo>⋅</mo><mo>[</mo><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo><mo>⋅</mo><mspace></mspace><mo>⋯</mo><mspace></mspace><mo>⋅</mo><mo>[</mo><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>]</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>]</mo><mo>=</mo><mn>0</mn><mo>,</mo></math></span></span></span> and we show that this upper bound is sharp by presenting an example in block triangular form of a subalgebra of M<span><math><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo></math></span> with dimension equal to the obtained upper bound. We apply this result to Lie solvable algebras of index 2, i.e., algebras satisfying the identity <span><math><mo>[</mo><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo><mo>,</mo><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo><mo>]</mo><mo>=</mo><mn>0</mn></math></span>. To be precise, for <span><math><mi>n</mi><mo>≤</mo><mn>4</mn></math></span>, we find the sharp upper bound for the dimension of a Lie solvable subalgebra of M<span><math><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo></math></span> of index 2, and for <span><math><mi>n</mi><mo>></mo><mn>4</mn></math></span>, we obtain the relatively tight (at least for small values of <span><math><mi>n</mi><mo>></mo><mn>4</mn></math></span>) interval<span><span><span><math><mo>[</mo><mspace></mspace><mn>2</mn><mo>+</mo><mrow><mo>⌊</mo><mfrac><mrow><mn>3</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>8</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>,</mo><mspace></mspace><mn>2</mn><mo>+</mo><mrow><mo>⌊</mo><mfrac><mrow><mn>5</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>12</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>]</mo></math></span></span></span> for the maximum dimension of a Lie solvable subalgebra of M<span><math><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo></math></span> of index 2, the exact value of which is not known.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0024379524002507/pdfft?md5=628621e04a0dfb73bb141d7e51b27ed7&pid=1-s2.0-S0024379524002507-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524002507","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For an arbitrary , we find an upper bound for the dimension of a subalgebra of the full matrix algebra M over an arbitrary field K satisfying the identity and we show that this upper bound is sharp by presenting an example in block triangular form of a subalgebra of M with dimension equal to the obtained upper bound. We apply this result to Lie solvable algebras of index 2, i.e., algebras satisfying the identity . To be precise, for , we find the sharp upper bound for the dimension of a Lie solvable subalgebra of M of index 2, and for , we obtain the relatively tight (at least for small values of ) interval for the maximum dimension of a Lie solvable subalgebra of M of index 2, the exact value of which is not known.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.