On the maximum dimensions of subalgebras of Mn(K) satisfying two related identities

IF 1 3区 数学 Q1 MATHEMATICS
Paweł Matraś , Leon van Wyk , Michał Ziembowski
{"title":"On the maximum dimensions of subalgebras of Mn(K) satisfying two related identities","authors":"Paweł Matraś ,&nbsp;Leon van Wyk ,&nbsp;Michał Ziembowski","doi":"10.1016/j.laa.2024.06.006","DOIUrl":null,"url":null,"abstract":"<div><p>For an arbitrary <span><math><mi>q</mi><mo>≥</mo><mn>2</mn></math></span>, we find an upper bound for the dimension of a subalgebra of the full matrix algebra M<span><math><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo></math></span> over an arbitrary field <em>K</em> satisfying the identity<span><span><span><math><mo>[</mo><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo><mo>⋅</mo><mo>[</mo><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo><mo>⋅</mo><mspace></mspace><mo>⋯</mo><mspace></mspace><mo>⋅</mo><mo>[</mo><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>]</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>]</mo><mo>=</mo><mn>0</mn><mo>,</mo></math></span></span></span> and we show that this upper bound is sharp by presenting an example in block triangular form of a subalgebra of M<span><math><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo></math></span> with dimension equal to the obtained upper bound. We apply this result to Lie solvable algebras of index 2, i.e., algebras satisfying the identity <span><math><mo>[</mo><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo><mo>,</mo><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo><mo>]</mo><mo>=</mo><mn>0</mn></math></span>. To be precise, for <span><math><mi>n</mi><mo>≤</mo><mn>4</mn></math></span>, we find the sharp upper bound for the dimension of a Lie solvable subalgebra of M<span><math><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo></math></span> of index 2, and for <span><math><mi>n</mi><mo>&gt;</mo><mn>4</mn></math></span>, we obtain the relatively tight (at least for small values of <span><math><mi>n</mi><mo>&gt;</mo><mn>4</mn></math></span>) interval<span><span><span><math><mo>[</mo><mspace></mspace><mn>2</mn><mo>+</mo><mrow><mo>⌊</mo><mfrac><mrow><mn>3</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>8</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>,</mo><mspace></mspace><mn>2</mn><mo>+</mo><mrow><mo>⌊</mo><mfrac><mrow><mn>5</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>12</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>]</mo></math></span></span></span> for the maximum dimension of a Lie solvable subalgebra of M<span><math><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo></math></span> of index 2, the exact value of which is not known.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0024379524002507/pdfft?md5=628621e04a0dfb73bb141d7e51b27ed7&pid=1-s2.0-S0024379524002507-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524002507","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For an arbitrary q2, we find an upper bound for the dimension of a subalgebra of the full matrix algebra Mn(K) over an arbitrary field K satisfying the identity[[x1,y1],z1][[x2,y2],z2][[xq,yq],zq]=0, and we show that this upper bound is sharp by presenting an example in block triangular form of a subalgebra of Mn(K) with dimension equal to the obtained upper bound. We apply this result to Lie solvable algebras of index 2, i.e., algebras satisfying the identity [[x1,y1],[x2,y2]]=0. To be precise, for n4, we find the sharp upper bound for the dimension of a Lie solvable subalgebra of Mn(K) of index 2, and for n>4, we obtain the relatively tight (at least for small values of n>4) interval[2+3n28,2+5n212] for the maximum dimension of a Lie solvable subalgebra of Mn(K) of index 2, the exact value of which is not known.

关于满足两个相关等式的 Mn(K) 子代数的最大维数
对于任意 q≥2,我们找到了任意域 K 上全矩阵代数 Mn(K) 子代数的维数上限,该代数满足同一性[[x1,y1],z1]⋅[[x2,y2]、z2]⋅⋯⋅[[xq,yq],zq]=0,我们通过举例说明 Mn(K) 子代数的维数等于所得到的上界的块三角形形式,证明这个上界是尖锐的。我们将这一结果应用于指数为 2 的可解李代数,即即满足特性 [[x1,y1],[x2,y2]]=0 的代数。准确地说,对于 n≤4,我们找到了索引为 2 的 Mn(K) 的列可解子代数维数的尖锐上限;对于 n>4,我们得到了相对严密的(至少对于 n>;4)的区间[2+⌊3n28⌋,2+⌊5n212⌋],即索引为 2 的 Mn(K) 的列可解子代数的最大维数,其精确值尚且未知。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信