3D printed scaffolds of biosilica and spongin from marine sponges: analysis of genotoxicity and cytotoxicity for bone tissue repair.

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Bioprocess and Biosystems Engineering Pub Date : 2024-09-01 Epub Date: 2024-06-13 DOI:10.1007/s00449-024-03042-z
Karolyne Dos Santos Jorge Sousa, Amanda de Souza, Matheus de Almeida Cruz, Lindiane Eloisa de Lima, Giovanna do Espirito Santo, Gustavo Oliva Amaral, Renata Neves Granito, Ana Claudia Renno
{"title":"3D printed scaffolds of biosilica and spongin from marine sponges: analysis of genotoxicity and cytotoxicity for bone tissue repair.","authors":"Karolyne Dos Santos Jorge Sousa, Amanda de Souza, Matheus de Almeida Cruz, Lindiane Eloisa de Lima, Giovanna do Espirito Santo, Gustavo Oliva Amaral, Renata Neves Granito, Ana Claudia Renno","doi":"10.1007/s00449-024-03042-z","DOIUrl":null,"url":null,"abstract":"<p><p>Biosilica (BS) and spongin (SPG) from marine sponges are highlighted for their potential to promote bone regeneration. Moreover, 3D printing is introduced as a technology for producing bone grafts with optimized porous structures, allowing for better cell attachment, proliferation, and differentiation. Thus, this study aimed to characterize the BS and BS/SPG 3D printed scaffolds and to evaluate the biological effects in vitro. The scaffolds were printed using an ink containing 4 wt.% of sodium alginate. The physicochemical characteristics of BS and BS/SPG 3D printed scaffolds were analyzed by SEM, EDS, FTIR, porosity, evaluation of mass loss, and pH measurement. For in vitro analysis, the cellular viability of the MC3T3-E1 cell lineage was assessed using the AlamarBlue<sup>®</sup> assay and confocal microscopy, while genotoxicity and mineralization potential were evaluated through the micronucleus assay and Alizarin Red S, respectively. SEM analysis revealed spicules in BS, the fibrillar structure of SPG, and material degradation over the immersion period. FTIR indicated peaks corresponding to silicon oxide in BS samples and carbon oxide and amine in SPG samples. BS-SPG scaffolds exhibited higher porosity, while BS scaffolds displayed greater mass loss. pH measurements indicated a significant decrease induced by BS, which was mitigated by SPG over the experimental periods. In vitro studies demonstrated the biocompatibility and non-cytotoxicity of scaffold extracts. .Also, the scaffolds promoted cellular differentiation. The micronucleus test further confirmed the absence of genotoxicity. These findings suggest that 3D printed BS and BS/SPG scaffolds may possess desirable morphological and physicochemical properties, indicating in vitro biocompatibility.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-03042-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biosilica (BS) and spongin (SPG) from marine sponges are highlighted for their potential to promote bone regeneration. Moreover, 3D printing is introduced as a technology for producing bone grafts with optimized porous structures, allowing for better cell attachment, proliferation, and differentiation. Thus, this study aimed to characterize the BS and BS/SPG 3D printed scaffolds and to evaluate the biological effects in vitro. The scaffolds were printed using an ink containing 4 wt.% of sodium alginate. The physicochemical characteristics of BS and BS/SPG 3D printed scaffolds were analyzed by SEM, EDS, FTIR, porosity, evaluation of mass loss, and pH measurement. For in vitro analysis, the cellular viability of the MC3T3-E1 cell lineage was assessed using the AlamarBlue® assay and confocal microscopy, while genotoxicity and mineralization potential were evaluated through the micronucleus assay and Alizarin Red S, respectively. SEM analysis revealed spicules in BS, the fibrillar structure of SPG, and material degradation over the immersion period. FTIR indicated peaks corresponding to silicon oxide in BS samples and carbon oxide and amine in SPG samples. BS-SPG scaffolds exhibited higher porosity, while BS scaffolds displayed greater mass loss. pH measurements indicated a significant decrease induced by BS, which was mitigated by SPG over the experimental periods. In vitro studies demonstrated the biocompatibility and non-cytotoxicity of scaffold extracts. .Also, the scaffolds promoted cellular differentiation. The micronucleus test further confirmed the absence of genotoxicity. These findings suggest that 3D printed BS and BS/SPG scaffolds may possess desirable morphological and physicochemical properties, indicating in vitro biocompatibility.

Abstract Image

从海洋海绵中提取的生物二氧化硅和海绵蛋白三维打印支架:用于骨组织修复的遗传毒性和细胞毒性分析。
从海洋海绵中提取的生物二氧化硅(BS)和海绵蛋白(SPG)因其促进骨再生的潜力而备受瞩目。此外,3D 打印技术可用于生产具有优化多孔结构的骨移植物,使细胞更好地附着、增殖和分化。因此,本研究旨在确定 BS 和 BS/SPG 三维打印支架的特性,并评估其体外生物效应。这些支架是用含有 4 重量百分比海藻酸钠的油墨打印的。通过 SEM、EDS、FTIR、孔隙率、质量损失评估和 pH 值测量分析了 BS 和 BS/SPG 三维打印支架的理化特性。在体外分析方面,使用 AlamarBlue® 分析法和共聚焦显微镜评估了 MC3T3-E1 细胞系的细胞活力,并分别通过微核试验和茜素红 S 评估了遗传毒性和矿化潜力。扫描电子显微镜分析显示了 BS 中的尖晶石、SPG 的纤维状结构以及浸泡期间的材料降解情况。傅立叶变换红外光谱(FTIR)显示,BS 样品中的峰值与氧化硅相对应,SPG 样品中的峰值与氧化碳和胺相对应。BS-SPG 支架显示出更高的孔隙率,而 BS 支架则显示出更大的质量损失。 pH 值测量结果表明,BS 引起的 pH 值显著下降,而 SPG 则在实验期间缓解了这一现象。体外研究表明,支架提取物具有生物相容性和无细胞毒性。此外,支架还能促进细胞分化。微核试验进一步证实了其无遗传毒性。这些研究结果表明,三维打印 BS 和 BS/SPG 支架可能具有理想的形态和理化特性,表明其具有体外生物相容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioprocess and Biosystems Engineering
Bioprocess and Biosystems Engineering 工程技术-工程:化工
CiteScore
7.90
自引率
2.60%
发文量
147
审稿时长
2.6 months
期刊介绍: Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes. Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged. The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信