Padmaja V. Mane , Richelle M. Rego , Pei Lay Yap , Dusan Losic , Mahaveer D. Kurkuri
{"title":"Unveiling cutting-edge advances in high surface area porous materials for the efficient removal of toxic metal ions from water","authors":"Padmaja V. Mane , Richelle M. Rego , Pei Lay Yap , Dusan Losic , Mahaveer D. Kurkuri","doi":"10.1016/j.pmatsci.2024.101314","DOIUrl":null,"url":null,"abstract":"<div><p>This review offers a comprehensive evaluation of an emerging category of adsorbing materials known as high surface area materials (HSAMs) in the realm of water remediation. The objective is to shed light on recent advancements in HSAMs featuring multiple dimensionalities, addressing their efficacy in adsorbing toxic metal ions from wastewater. The spectrum of HSAMs examined in this review encompasses metal–organic frameworks (MOFs), covalent organic frameworks (COFs), carbon-based porous materials, mesoporous silica, polymer-based porous materials, layered double hydroxides, and aerogels. This review delves into the state-of-the-art design and synthetic approaches for these materials, elucidating their inherent properties. It particularly emphasizes how the combination of high surface area and pore structure contributes to their effectiveness in adsorbing toxic metal ions. These materials possess remarkable attributes, including molecular functionalization versatility, high porosity, expansive surface area, distinctive physicochemical characteristics, and well-defined crystal structures, rendering them exceptional adsorbents. While each of these materials boasts unique advantages stemming from their remarkable properties, their synthesis often entails intricate and costly procedures, presenting a substantial obstacle to their commercialization and widespread adoption. Finally, the review underscores the existing challenges that must be addressed to expedite their translation for water remediation applications of these promising materials.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"146 ","pages":"Article 101314"},"PeriodicalIF":33.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079642524000835/pdfft?md5=7495ac851cbb616c208e0042fe660466&pid=1-s2.0-S0079642524000835-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642524000835","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This review offers a comprehensive evaluation of an emerging category of adsorbing materials known as high surface area materials (HSAMs) in the realm of water remediation. The objective is to shed light on recent advancements in HSAMs featuring multiple dimensionalities, addressing their efficacy in adsorbing toxic metal ions from wastewater. The spectrum of HSAMs examined in this review encompasses metal–organic frameworks (MOFs), covalent organic frameworks (COFs), carbon-based porous materials, mesoporous silica, polymer-based porous materials, layered double hydroxides, and aerogels. This review delves into the state-of-the-art design and synthetic approaches for these materials, elucidating their inherent properties. It particularly emphasizes how the combination of high surface area and pore structure contributes to their effectiveness in adsorbing toxic metal ions. These materials possess remarkable attributes, including molecular functionalization versatility, high porosity, expansive surface area, distinctive physicochemical characteristics, and well-defined crystal structures, rendering them exceptional adsorbents. While each of these materials boasts unique advantages stemming from their remarkable properties, their synthesis often entails intricate and costly procedures, presenting a substantial obstacle to their commercialization and widespread adoption. Finally, the review underscores the existing challenges that must be addressed to expedite their translation for water remediation applications of these promising materials.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.