Crystalline as-deposited TiO 2 anatase thin films grown from TDMAT and water using thermal atomic layer deposition with in situ layer-by-layer air annealing

Jamie P. Wooding, K. Kalaitzidou, M. Losego
{"title":"Crystalline as-deposited TiO 2 anatase thin films grown from TDMAT and water using thermal atomic layer deposition with in situ layer-by-layer air annealing","authors":"Jamie P. Wooding, K. Kalaitzidou, M. Losego","doi":"10.3897/aldj.2.117753","DOIUrl":null,"url":null,"abstract":"We report a new thermal atomic layer deposition (thermal-ALD) process including an air exposure as a third precursor to deposit crystalline TiO2 anatase thin films from tetrakis(dimethylamido)titanium(IV) (TDMAT) and water at deposition temperatures as low as 180 °C and film thicknesses as low as 10 nm. This ALD process enables TiO2-antase crystal growth during the deposition at low temperatures (< 220 °C). This additional oxidant pulse is used to fully oxidize the Ti to a 4+ state in the amorphous film, lowering the barrier to crystalline anatase formation. This new approach is informed by preliminary studies of post-deposition annealing (PDA) of thermal ALD films in both nitrogen and air atmospheres, which demonstrate the importance of having an oxidizing atmosphere to achieve the nucleation of the crystalline anatase phase. This oxidizing atmosphere is subsequently introduced into the ALD cycle as a third precursor and is shown to be more effective and efficient in promoting the crystalline transformation than even by post-deposition annealing. The crystalline anatase phase is verified by Raman spectroscopy and grazing incidence X-ray diffraction (GIXRD). The mechanism for crystallization during the TDMAT/H2O/air ALD cycle is probed by chemical state analysis via X-ray photoelectron spectroscopy (XPS). We propose that sub-oxidation in TiO2 thin films deposited by the thermal-ALD process inhibits crystallization during ALD from TDMAT/H2O chemistry. Scanning electron microscopy (SEM) is used to investigate the microstructure of these TiO2 thin films as a function of thickness (5 nm to 50 nm) and deposition temperature (180 °C to 220 °C). The reported layer-by-layer air anneal process is found to crystallize entire films in shorter total process times than thermal-ALD with ex situ post deposition annealing at identical temperatures, presumably due to the improved surface diffusion kinetics accessed during the deposition process.","PeriodicalId":475959,"journal":{"name":"Atomic Layer Deposition","volume":"6 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Layer Deposition","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.3897/aldj.2.117753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We report a new thermal atomic layer deposition (thermal-ALD) process including an air exposure as a third precursor to deposit crystalline TiO2 anatase thin films from tetrakis(dimethylamido)titanium(IV) (TDMAT) and water at deposition temperatures as low as 180 °C and film thicknesses as low as 10 nm. This ALD process enables TiO2-antase crystal growth during the deposition at low temperatures (< 220 °C). This additional oxidant pulse is used to fully oxidize the Ti to a 4+ state in the amorphous film, lowering the barrier to crystalline anatase formation. This new approach is informed by preliminary studies of post-deposition annealing (PDA) of thermal ALD films in both nitrogen and air atmospheres, which demonstrate the importance of having an oxidizing atmosphere to achieve the nucleation of the crystalline anatase phase. This oxidizing atmosphere is subsequently introduced into the ALD cycle as a third precursor and is shown to be more effective and efficient in promoting the crystalline transformation than even by post-deposition annealing. The crystalline anatase phase is verified by Raman spectroscopy and grazing incidence X-ray diffraction (GIXRD). The mechanism for crystallization during the TDMAT/H2O/air ALD cycle is probed by chemical state analysis via X-ray photoelectron spectroscopy (XPS). We propose that sub-oxidation in TiO2 thin films deposited by the thermal-ALD process inhibits crystallization during ALD from TDMAT/H2O chemistry. Scanning electron microscopy (SEM) is used to investigate the microstructure of these TiO2 thin films as a function of thickness (5 nm to 50 nm) and deposition temperature (180 °C to 220 °C). The reported layer-by-layer air anneal process is found to crystallize entire films in shorter total process times than thermal-ALD with ex situ post deposition annealing at identical temperatures, presumably due to the improved surface diffusion kinetics accessed during the deposition process.
利用热原子层沉积和原位逐层空气退火技术,从 TDMAT 和水中生长出晶体状沉积 TiO 2 锐钛矿薄膜
我们报告了一种新的热原子层沉积(thermal-ALD)工艺,该工艺将空气暴露作为第三前驱体,以四(二甲基氨基)钛(IV)(TDMAT)和水为原料,在低至 180 °C 的沉积温度和低至 10 nm 的薄膜厚度下沉积出结晶的 TiO2 锐钛矿薄膜。这种 ALD 工艺可使 TiO2-antase 晶体在低温(< 220 ℃)沉积过程中生长。这种额外的氧化剂脉冲用于将无定形薄膜中的钛完全氧化为 4+ 状态,从而降低了形成晶体锐钛矿的障碍。这种新方法借鉴了在氮气和空气气氛中对热原子层沉积 (ALD) 薄膜进行沉积后退火 (PDA) 的初步研究,这些研究证明了氧化气氛对晶体锐钛矿相成核的重要性。这种氧化气氛随后作为第三种前驱体被引入 ALD 循环,并被证明在促进结晶转化方面比沉积后退火更加有效和高效。拉曼光谱和掠入射 X 射线衍射 (GIXRD) 对结晶锐钛矿相进行了验证。通过 X 射线光电子能谱 (XPS) 进行化学状态分析,探究了 TDMAT/H2O/air ALD 循环过程中的结晶机制。我们提出,热-ALD 工艺沉积的二氧化钛薄膜中的次氧化抑制了 TDMAT/H2O 化学 ALD 过程中的结晶。我们使用扫描电子显微镜(SEM)研究了这些二氧化钛薄膜的微观结构与厚度(5 nm 至 50 nm)和沉积温度(180 °C 至 220 °C)的函数关系。与在相同温度下进行原位沉积后退火的热-ALD 相比,所报告的逐层空气退火工艺能在更短的总工艺时间内使整个薄膜结晶,这可能是由于在沉积过程中改进了表面扩散动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信