Nikola Prouzová, Pavla Kubátová, Filip Mercl, Jiřina Száková, Jana Najmanová, Pavel Tlustoš
{"title":"Biomass yield and metal phytoextraction efficiency of Salix and Populus clones harvested at different rotation lengths in the field experiment","authors":"Nikola Prouzová, Pavla Kubátová, Filip Mercl, Jiřina Száková, Jana Najmanová, Pavel Tlustoš","doi":"10.1186/s40538-024-00600-1","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Phytoextraction belongs to environmentally well-accepted remediation technologies to remove metals from contaminated soils. Due to long-time requirement, sufficient data for proper phytoextraction evaluation are missing. Four clones of fast-growing trees: two willow species (S1), <i>Salix viminalis</i> L. (<i>Salix schwerinii</i> E.L.Wolf × <i>S. viminalis</i>) × <i>S. viminalis</i>) and (S2)—<i>Salix smithiana</i> (<i>Salix</i> × <i>smithiana</i> Willd.), and two poplar clones (P1), <i>Populus</i> Max-4 (<i>Populus nigra</i> L. × <i>Populus maximowiczii</i> A. Henry) and (P2) Wolterson (<i>P. nigra</i> L.) were cultivated under field conditions at medium-to-high Cd and Pb, and low Zn soil contamination to assess trees’ long-term ability of biomass production and removal of potentially toxic elements (PTEs). The biomass yield and PTE uptake were measured during 8 years of regular growth under three rotation lengths: four harvests following 2-year periods (4 × 2y), two harvests in 4-year periods (2 × 4y), and one harvest representing 8 years of growth (1 × 8y).</p><h3>Results</h3><p>In most cases, the highest annual dry biomass yield was achieved with a 2 × 4y rotation (P1 = 20.9 t ha<sup>−1</sup> y<sup>−1</sup>, S2 = 18.4 t ha<sup>−1</sup>y<sup>−1</sup>), and the yield decreased in order 2 × 4y > 1 × 8y > 4 × 2y of harvesting periods. Only clone S1 showed a different pattern. The differences in biomass yield substantially affected the PTE phytoextraction. The greatest amount of Cd and Zn was removed by willow S2, with the highest biomass yield, and the strongest ability to accumulate PTEs. With 2 × 4y rotation, S2 removed a substantial amount of Cd (9.07%) and Zn (3.43%) from the topsoil horizon (0–20 cm) and 5.62% Cd and 2.04% Zn from horizon 20–40 cm; phytoextraction rate was slightly lower for 1 × 8y rotation. The poplar P1 removed the most Pb in the 1 × 8y rotation, but the overall Pb phytoextraction was negligible. The results indicated that lignin and cellulose contents increased, and hemicellulose content decreased with increased concentrations of Cd, Pb and Zn in poplars wood.</p><h3>Conclusions</h3><p>The data confirmed that phytoextraction over longer harvest periods offered promising results for removing Cd from medium- to high-level contaminated soils; however, the ability of Pb removal was extremely low. The longer harvest period should be more economically feasible.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"11 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00600-1","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-024-00600-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Phytoextraction belongs to environmentally well-accepted remediation technologies to remove metals from contaminated soils. Due to long-time requirement, sufficient data for proper phytoextraction evaluation are missing. Four clones of fast-growing trees: two willow species (S1), Salix viminalis L. (Salix schwerinii E.L.Wolf × S. viminalis) × S. viminalis) and (S2)—Salix smithiana (Salix × smithiana Willd.), and two poplar clones (P1), Populus Max-4 (Populus nigra L. × Populus maximowiczii A. Henry) and (P2) Wolterson (P. nigra L.) were cultivated under field conditions at medium-to-high Cd and Pb, and low Zn soil contamination to assess trees’ long-term ability of biomass production and removal of potentially toxic elements (PTEs). The biomass yield and PTE uptake were measured during 8 years of regular growth under three rotation lengths: four harvests following 2-year periods (4 × 2y), two harvests in 4-year periods (2 × 4y), and one harvest representing 8 years of growth (1 × 8y).
Results
In most cases, the highest annual dry biomass yield was achieved with a 2 × 4y rotation (P1 = 20.9 t ha−1 y−1, S2 = 18.4 t ha−1y−1), and the yield decreased in order 2 × 4y > 1 × 8y > 4 × 2y of harvesting periods. Only clone S1 showed a different pattern. The differences in biomass yield substantially affected the PTE phytoextraction. The greatest amount of Cd and Zn was removed by willow S2, with the highest biomass yield, and the strongest ability to accumulate PTEs. With 2 × 4y rotation, S2 removed a substantial amount of Cd (9.07%) and Zn (3.43%) from the topsoil horizon (0–20 cm) and 5.62% Cd and 2.04% Zn from horizon 20–40 cm; phytoextraction rate was slightly lower for 1 × 8y rotation. The poplar P1 removed the most Pb in the 1 × 8y rotation, but the overall Pb phytoextraction was negligible. The results indicated that lignin and cellulose contents increased, and hemicellulose content decreased with increased concentrations of Cd, Pb and Zn in poplars wood.
Conclusions
The data confirmed that phytoextraction over longer harvest periods offered promising results for removing Cd from medium- to high-level contaminated soils; however, the ability of Pb removal was extremely low. The longer harvest period should be more economically feasible.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.