A logical account of subtyping for session types

IF 0.7 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Ross Horne , Luca Padovani
{"title":"A logical account of subtyping for session types","authors":"Ross Horne ,&nbsp;Luca Padovani","doi":"10.1016/j.jlamp.2024.100986","DOIUrl":null,"url":null,"abstract":"<div><p>We study iso-recursive and equi-recursive subtyping for session types in a logical setting, where session types are propositions of multiplicative/additive linear logic extended with least and greatest fixed points. Both subtyping relations admit a simple characterization that can be roughly spelled out as the following lapalissade: every session type is larger than the smallest session type and smaller than the largest session type. We observe that, because of the logical setting in which they arise, these subtyping relations preserve termination in addition to the usual safety properties of sessions.</p></div>","PeriodicalId":48797,"journal":{"name":"Journal of Logical and Algebraic Methods in Programming","volume":"141 ","pages":"Article 100986"},"PeriodicalIF":0.7000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352220824000403/pdfft?md5=b08604bd6126c32af455466713f5ba78&pid=1-s2.0-S2352220824000403-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Logical and Algebraic Methods in Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352220824000403","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We study iso-recursive and equi-recursive subtyping for session types in a logical setting, where session types are propositions of multiplicative/additive linear logic extended with least and greatest fixed points. Both subtyping relations admit a simple characterization that can be roughly spelled out as the following lapalissade: every session type is larger than the smallest session type and smaller than the largest session type. We observe that, because of the logical setting in which they arise, these subtyping relations preserve termination in addition to the usual safety properties of sessions.

会话类型子类型的逻辑说明
我们研究了逻辑环境中会话类型的等递归和等递归子类型,其中会话类型是乘法/加法线性逻辑的命题,扩展有最小和最大定点。这两种子类型关系都有一个简单的表征,大致可以表述为:每个会话类型都比最小的会话类型大,比最大的会话类型小。我们注意到,由于它们产生的逻辑环境,这些子类型关系除了保留会话的通常安全属性外,还保留了终止属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Logical and Algebraic Methods in Programming
Journal of Logical and Algebraic Methods in Programming COMPUTER SCIENCE, THEORY & METHODS-LOGIC
CiteScore
2.60
自引率
22.20%
发文量
48
期刊介绍: The Journal of Logical and Algebraic Methods in Programming is an international journal whose aim is to publish high quality, original research papers, survey and review articles, tutorial expositions, and historical studies in the areas of logical and algebraic methods and techniques for guaranteeing correctness and performability of programs and in general of computing systems. All aspects will be covered, especially theory and foundations, implementation issues, and applications involving novel ideas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信