{"title":"Connectome-based schizophrenia prediction using structural connectivity - Deep Graph Neural Network(sc-DGNN).","authors":"P Udayakumar, R Subhashini","doi":"10.3233/XST-230426","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Connectome is understanding the complex organization of the human brain's structural and functional connectivity is essential for gaining insights into cognitive processes and disorders.</p><p><strong>Objective: </strong>To improve the prediction accuracy of brain disorder issues, the current study investigates dysconnected subnetworks and graph structures associated with schizophrenia.</p><p><strong>Method: </strong>By using the proposed structural connectivity-deep graph neural network (sc-DGNN) model and compared with machine learning (ML) and deep learning (DL) models.This work attempts to focus on eighty-eight subjects of diffusion magnetic resonance imaging (dMRI), three classical ML, and five DL models.</p><p><strong>Result: </strong>The structural connectivity-deep graph neural network (sc-DGNN) model is proposed to effectively predict dysconnectedness associated with schizophrenia and exhibits superior performance compared to traditional ML and DL (GNNs) methods in terms of accuracy, sensitivity, specificity, precision, F1-score, and Area under receiver operating characteristic (AUC).</p><p><strong>Conclusion: </strong>The classification task on schizophrenia using structural connectivity matrices and experimental results showed that linear discriminant analysis (LDA) performed 72% accuracy rate in ML models and sc-DGNN performed at a 93% accuracy rate in DL models to distinguish between schizophrenia and healthy patients.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"1041-1059"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/XST-230426","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Connectome is understanding the complex organization of the human brain's structural and functional connectivity is essential for gaining insights into cognitive processes and disorders.
Objective: To improve the prediction accuracy of brain disorder issues, the current study investigates dysconnected subnetworks and graph structures associated with schizophrenia.
Method: By using the proposed structural connectivity-deep graph neural network (sc-DGNN) model and compared with machine learning (ML) and deep learning (DL) models.This work attempts to focus on eighty-eight subjects of diffusion magnetic resonance imaging (dMRI), three classical ML, and five DL models.
Result: The structural connectivity-deep graph neural network (sc-DGNN) model is proposed to effectively predict dysconnectedness associated with schizophrenia and exhibits superior performance compared to traditional ML and DL (GNNs) methods in terms of accuracy, sensitivity, specificity, precision, F1-score, and Area under receiver operating characteristic (AUC).
Conclusion: The classification task on schizophrenia using structural connectivity matrices and experimental results showed that linear discriminant analysis (LDA) performed 72% accuracy rate in ML models and sc-DGNN performed at a 93% accuracy rate in DL models to distinguish between schizophrenia and healthy patients.
期刊介绍:
Research areas within the scope of the journal include:
Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants
X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional
Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics
Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes