Binarized Neural Network Comprising Quasi-Nonvolatile Memory Devices for Neuromorphic Computing

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yunwoo Shin, Juhee Jeon, Kyoungah Cho, Sangsig Kim
{"title":"Binarized Neural Network Comprising Quasi-Nonvolatile Memory Devices for Neuromorphic Computing","authors":"Yunwoo Shin,&nbsp;Juhee Jeon,&nbsp;Kyoungah Cho,&nbsp;Sangsig Kim","doi":"10.1002/aelm.202400061","DOIUrl":null,"url":null,"abstract":"<p>This study presents a binarized neural network (BNN) comprising quasi-nonvolatile memory (QNVM) devices that operate in a positive feedback loop mechanism and exhibit an extremely low subthreshold swing (≤ 5 mV dec<sup>−1</sup>) and a high on/off ratio (≥ 10<sup>7</sup>). A pair of QNVM devices are used for a single synaptic cell in a cell array, in which its memory state represents the synaptic weight, and the voltages applied to the pair act as input in a complementary fashion. The array of synaptic cells performs matrix multiply-accumulate (MAC) operations between the weight matrix and input vector using XNOR and current summation. All the results of the MAC operations and vector-matrix multiplications are equivalent. Moreover, the BNN features a high accuracy of 93.32% in the MNIST image recognition simulation owing to high device uniformity (1.35%), which demonstrates the feasibility of compact and high-performance neuromorphic computing.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"10 9","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202400061","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aelm.202400061","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a binarized neural network (BNN) comprising quasi-nonvolatile memory (QNVM) devices that operate in a positive feedback loop mechanism and exhibit an extremely low subthreshold swing (≤ 5 mV dec−1) and a high on/off ratio (≥ 107). A pair of QNVM devices are used for a single synaptic cell in a cell array, in which its memory state represents the synaptic weight, and the voltages applied to the pair act as input in a complementary fashion. The array of synaptic cells performs matrix multiply-accumulate (MAC) operations between the weight matrix and input vector using XNOR and current summation. All the results of the MAC operations and vector-matrix multiplications are equivalent. Moreover, the BNN features a high accuracy of 93.32% in the MNIST image recognition simulation owing to high device uniformity (1.35%), which demonstrates the feasibility of compact and high-performance neuromorphic computing.

Abstract Image

由准非易失性存储器件组成的用于神经形态计算的二值化神经网络
本研究提出了一种由准非易失性存储器(QNVM)器件组成的二值化神经网络(BNN),该器件在正反馈回路机制中运行,具有极低的阈下摆动(≤ 5 mV dec-1)和较高的开/关比(≥ 107)。细胞阵列中的单个突触细胞使用一对 QNVM 器件,其存储状态代表突触权重,施加到这对器件上的电压以互补方式充当输入。突触单元阵列使用 XNOR 和电流求和法在权重矩阵和输入向量之间进行矩阵乘积 (MAC) 运算。所有 MAC 运算和向量矩阵乘法的结果都是等效的。此外,由于器件均匀性高(1.35%),BNN 在 MNIST 图像识别模拟中的准确率高达 93.32%,这证明了紧凑型高性能神经形态计算的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信