Metastable Helium Atom Creation Dynamics in High-Voltage Pulsed Discharge with Transverse Magnetic Field Effects

IF 2.6 3区 物理与天体物理 Q3 ENGINEERING, CHEMICAL
K. M. Rabadanov, N. A. Ashurbekov, K. O. Iminov, G. Sh. Shakhsinov, M. Z. Zakaryaeva, A. A. Murtazaeva
{"title":"Metastable Helium Atom Creation Dynamics in High-Voltage Pulsed Discharge with Transverse Magnetic Field Effects","authors":"K. M. Rabadanov,&nbsp;N. A. Ashurbekov,&nbsp;K. O. Iminov,&nbsp;G. Sh. Shakhsinov,&nbsp;M. Z. Zakaryaeva,&nbsp;A. A. Murtazaeva","doi":"10.1007/s11090-024-10478-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we investigate the effect of an external transverse weak magnetic field on the creation of metastable helium atoms and excited helium molecules in a high-voltage pulsed discharge in helium at medium pressure. A two-dimensional fluid model is used to describe a high-voltage pulsed discharge in helium in the external transverse weak magnetic field. The dynamics of discharge development in the high-voltage pulsed discharge in helium at a pressure of 30 Torr in the presence and absence of the magnetic field is studied. The effect of the external magnetic field on the behavior of the density of charged particles, metastable helium atoms, and excited helium molecules in the high-voltage pulsed helium discharge has been investigated. It is shown that in the discharge region, the density of metastable atoms decreases when a transverse magnetic field is applied, which is a consequence of an increase in the frequency of stepwise ionization.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-024-10478-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we investigate the effect of an external transverse weak magnetic field on the creation of metastable helium atoms and excited helium molecules in a high-voltage pulsed discharge in helium at medium pressure. A two-dimensional fluid model is used to describe a high-voltage pulsed discharge in helium in the external transverse weak magnetic field. The dynamics of discharge development in the high-voltage pulsed discharge in helium at a pressure of 30 Torr in the presence and absence of the magnetic field is studied. The effect of the external magnetic field on the behavior of the density of charged particles, metastable helium atoms, and excited helium molecules in the high-voltage pulsed helium discharge has been investigated. It is shown that in the discharge region, the density of metastable atoms decreases when a transverse magnetic field is applied, which is a consequence of an increase in the frequency of stepwise ionization.

Abstract Image

具有横向磁场效应的高压脉冲放电中氦原子的可迁移生成动力学
在这项工作中,我们研究了外部横向弱磁场对中压氦气高压脉冲放电中析出的氦原子和激发的氦分子的影响。采用二维流体模型来描述外部横向弱磁场中氦气高压脉冲放电。研究了压力为 30 托的氦中高压脉冲放电在磁场存在和不存在的情况下的放电发展动力学。研究了外部磁场对高压脉冲氦放电中带电粒子、氦原子和受激氦分子密度行为的影响。研究表明,在放电区,当施加横向磁场时,可移动原子的密度会降低,这是阶跃电离频率增加的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plasma Chemistry and Plasma Processing
Plasma Chemistry and Plasma Processing 工程技术-工程:化工
CiteScore
5.90
自引率
8.30%
发文量
73
审稿时长
6-12 weeks
期刊介绍: Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信