{"title":"Predicting frequency deviation of a crystal oscillator based on long short-term memory network and transfer learning technique","authors":"Bo-Chen Su, Duc Huy Nguyen, Paul C.-P. Chao","doi":"10.1007/s00542-024-05691-2","DOIUrl":null,"url":null,"abstract":"<p>Crystal oscillators are fundamental to an extensive range of electronic systems, spanning computers, mobile phones, and automotive electronics. Their significance is accentuated in high-precision applications such as global positioning systems (GPS) and aerospace systems where the frequency-temperature characteristics and thermal hysteresis phenomena are of paramount importance. This study introduces a groundbreaking approach for predicting frequency deviations arising from thermal hysteresis using Long Short-Term Memory (LSTM) networks. Contrary to prior research which predominantly utilized cubic functions to model frequency-temperature characteristics and frequently overlooked thermal hysteresis, this investigation distinguishes itself by leveraging LSTM. The proposed methodology is aptly designed to model both time-dependent and temperature-dependent variations, consequently offering a heightened precision in predicting frequency deviations. By integrating transfer learning techniques, the model's adaptability to diverse databases is augmented, broadening its utility. Experimental evaluations with real-world data underscore the preeminence of the introduced method, registering a root mean square error (RMSE) of less than 0.05 ppm, more favorable than that by the traditional cubic functions and all the prior arts.</p>","PeriodicalId":18544,"journal":{"name":"Microsystem Technologies","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystem Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00542-024-05691-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Crystal oscillators are fundamental to an extensive range of electronic systems, spanning computers, mobile phones, and automotive electronics. Their significance is accentuated in high-precision applications such as global positioning systems (GPS) and aerospace systems where the frequency-temperature characteristics and thermal hysteresis phenomena are of paramount importance. This study introduces a groundbreaking approach for predicting frequency deviations arising from thermal hysteresis using Long Short-Term Memory (LSTM) networks. Contrary to prior research which predominantly utilized cubic functions to model frequency-temperature characteristics and frequently overlooked thermal hysteresis, this investigation distinguishes itself by leveraging LSTM. The proposed methodology is aptly designed to model both time-dependent and temperature-dependent variations, consequently offering a heightened precision in predicting frequency deviations. By integrating transfer learning techniques, the model's adaptability to diverse databases is augmented, broadening its utility. Experimental evaluations with real-world data underscore the preeminence of the introduced method, registering a root mean square error (RMSE) of less than 0.05 ppm, more favorable than that by the traditional cubic functions and all the prior arts.