A TaOx/TiOy Bilayer Memristor with Enhanced Synaptic Features for Neuromorphic Computing

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mingmin Zhu, Zhendi Yu, Gao Hu, Kai Yu, Yulong Jiang, Jiawei Wang, Wenjing Dong, Jinming Guo, Yang Qiu, Guoliang Yu, Hao-Miao Zhou
{"title":"A TaOx/TiOy Bilayer Memristor with Enhanced Synaptic Features for Neuromorphic Computing","authors":"Mingmin Zhu,&nbsp;Zhendi Yu,&nbsp;Gao Hu,&nbsp;Kai Yu,&nbsp;Yulong Jiang,&nbsp;Jiawei Wang,&nbsp;Wenjing Dong,&nbsp;Jinming Guo,&nbsp;Yang Qiu,&nbsp;Guoliang Yu,&nbsp;Hao-Miao Zhou","doi":"10.1002/aelm.202400008","DOIUrl":null,"url":null,"abstract":"<p>Memristors are a candidate device for artificial neural systems due to their excellent conductance-regulation ability and potential to simulate the characteristics of biological synapses. This study fabricated a Pt/TaO<sub>x</sub>/TiO<sub>y</sub>/Ti analog artificial synapse memristor that exhibits excellent multilevel storage property with a large on/off ratio of ≈660 times. The dynamic resistive switching mechanism is well expounded and validated by the reset stopping voltage dependent Schottky fitting results. Moreover, the essential biological synaptic characteristics such as long-term potentiation/depression (LTP/D) and paired-pulse facilitation (PPF) are successfully mimicked with a low pulse energy consumption of 12.69 nJ. A neuromorphic network constructed on the enhanced symmetry and linearity of conductance for this Pt/TaO<sub>x</sub>/TiO<sub>y</sub>/Ti memristive device can achieve 92.45% accuracy in recognizing handwritten pattern. These results demonstrate a significant potential for application Pt/TaO<sub>x</sub>/TiO<sub>y</sub>/Ti memristor in non-volatile memory and bioinspired neuromorphic systems.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"10 8","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202400008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aelm.202400008","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Memristors are a candidate device for artificial neural systems due to their excellent conductance-regulation ability and potential to simulate the characteristics of biological synapses. This study fabricated a Pt/TaOx/TiOy/Ti analog artificial synapse memristor that exhibits excellent multilevel storage property with a large on/off ratio of ≈660 times. The dynamic resistive switching mechanism is well expounded and validated by the reset stopping voltage dependent Schottky fitting results. Moreover, the essential biological synaptic characteristics such as long-term potentiation/depression (LTP/D) and paired-pulse facilitation (PPF) are successfully mimicked with a low pulse energy consumption of 12.69 nJ. A neuromorphic network constructed on the enhanced symmetry and linearity of conductance for this Pt/TaOx/TiOy/Ti memristive device can achieve 92.45% accuracy in recognizing handwritten pattern. These results demonstrate a significant potential for application Pt/TaOx/TiOy/Ti memristor in non-volatile memory and bioinspired neuromorphic systems.

Abstract Image

Abstract Image

用于神经形态计算的具有增强突触功能的 TaOx/TiOy 双层膜晶体管
忆阻器因其出色的电导调节能力和模拟生物突触特性的潜力而成为人工神经系统的候选器件。本研究制备了一种 Pt/TaOx/TiOy/Ti 模拟人工突触忆阻器,该忆阻器表现出优异的多级存储特性,具有≈660 倍的大导通/关断比。复位停止电压相关肖特基拟合结果很好地阐述并验证了动态电阻开关机制。此外,还成功模拟了长期延时/抑制(LTP/D)和成对脉冲促进(PPF)等重要的生物突触特性,脉冲能耗低至 12.69 nJ。该 Pt/TaOx/TiOy/Ti Memristive 器件利用增强的对称性和线性电导构建的神经形态网络在识别手写图案方面的准确率达到 92.45%。这些结果表明,Pt/TaOx/TiOy/Ti忆阻器在非易失性存储器和生物启发神经形态系统中的应用潜力巨大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信