{"title":"A Mars Exploration Control Virtual Simulation Experiment Platform for Engineering Practice in Control Engineering Education","authors":"Zeyu Wang;Yixin Liu;Lingling Wang;Li Fu","doi":"10.1109/TE.2024.3392332","DOIUrl":null,"url":null,"abstract":"Contribution: This article presents a Mars Exploration Control Virtual Simulation Experiment Platform (MEC-vslab), which aims to address the current challenge of limited integration between control engineering education and engineering practice. MEC-vslab is oriented toward the practical needs of Mars exploration engineering. It offers unparalleled advantages by transcending temporal and spatial restrictions and has been applied to several basic control engineering curriculums.Background: Owing to the limited applicability of conventional control engineering education in practical engineering, students encounter difficulties in connecting theoretical knowledge with real-world application scenarios. Due to the impact of environmental complexity and conditional limitations, teaching laboratories cannot realistically reproduce aerospace engineering application environments and problems, making it difficult to develop students’ ability to solve unknown engineering problems.Intended Outcomes: MEC-vslab facilitates students in acquiring comprehensive control knowledge, encompassing Mars rovers and drones’ dynamics modeling, controller design, and parameter configuration for strongly coupled systems. By engaging with this virtual simulation platform, students develop a profound understanding of cutting-edge control engineering principles, augmenting their proficiency in employing control theory to address practical engineering challenges.Application Design: MEC-vslab as a part of the control-related theoretical curriculum, it encompasses three stages. By completing these stages in succession, students are able to apply their theoretical knowledge toward solving practical engineering problems in a virtual setting.Findings: The analysis based on positive student feedback as well as their learning behavior and questionnaire research that the MEC-vslab is an effective learning tool to integrate control engineering education with high-precision engineering practice needs.","PeriodicalId":55011,"journal":{"name":"IEEE Transactions on Education","volume":"67 4","pages":"610-619"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Education","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10538330/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0
Abstract
Contribution: This article presents a Mars Exploration Control Virtual Simulation Experiment Platform (MEC-vslab), which aims to address the current challenge of limited integration between control engineering education and engineering practice. MEC-vslab is oriented toward the practical needs of Mars exploration engineering. It offers unparalleled advantages by transcending temporal and spatial restrictions and has been applied to several basic control engineering curriculums.Background: Owing to the limited applicability of conventional control engineering education in practical engineering, students encounter difficulties in connecting theoretical knowledge with real-world application scenarios. Due to the impact of environmental complexity and conditional limitations, teaching laboratories cannot realistically reproduce aerospace engineering application environments and problems, making it difficult to develop students’ ability to solve unknown engineering problems.Intended Outcomes: MEC-vslab facilitates students in acquiring comprehensive control knowledge, encompassing Mars rovers and drones’ dynamics modeling, controller design, and parameter configuration for strongly coupled systems. By engaging with this virtual simulation platform, students develop a profound understanding of cutting-edge control engineering principles, augmenting their proficiency in employing control theory to address practical engineering challenges.Application Design: MEC-vslab as a part of the control-related theoretical curriculum, it encompasses three stages. By completing these stages in succession, students are able to apply their theoretical knowledge toward solving practical engineering problems in a virtual setting.Findings: The analysis based on positive student feedback as well as their learning behavior and questionnaire research that the MEC-vslab is an effective learning tool to integrate control engineering education with high-precision engineering practice needs.
期刊介绍:
The IEEE Transactions on Education (ToE) publishes significant and original scholarly contributions to education in electrical and electronics engineering, computer engineering, computer science, and other fields within the scope of interest of IEEE. Contributions must address discovery, integration, and/or application of knowledge in education in these fields. Articles must support contributions and assertions with compelling evidence and provide explicit, transparent descriptions of the processes through which the evidence is collected, analyzed, and interpreted. While characteristics of compelling evidence cannot be described to address every conceivable situation, generally assessment of the work being reported must go beyond student self-report and attitudinal data.