Dongxue Zhao;Zhiliang Xia;Yi Yang;Meiying Liu;Yuancheng Yang;Zongliang Huo
{"title":"Optimization of Void Defects at TiN/Si:HfO2 Interface for 3-D Ferroelectric Memory","authors":"Dongxue Zhao;Zhiliang Xia;Yi Yang;Meiying Liu;Yuancheng Yang;Zongliang Huo","doi":"10.1109/TSM.2024.3403230","DOIUrl":null,"url":null,"abstract":"In the 3D ferroelectric memory fabrication process, the outer Titanium nitride metal electrode and silicon doped hafnium-based ferroelectric layer will produce void defects at the interfaces, causing increased leakage and compromising device performance. These void defects are caused by the volume contraction during the phase transition process, which leads to tension at the outer interface of the 3D ferroelectric capacitor structure. Due to the unavoidable structural stress, it is necessary to optimize the interface bonding energy. First principles simulation revealed insufficient binding energy between titanium nitride and silicon doped hafnium oxide ferroelectric materials, while introducing an amorphous alumina interface layer can effectively improve the binding ability. Experimental verification has confirmed that using an amorphous alumina interface layer as an adhesive layer can successfully solve the interface void defects, thereby improving the ferroelectric properties in three-dimensional structures.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 4","pages":"542-545"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10535768/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In the 3D ferroelectric memory fabrication process, the outer Titanium nitride metal electrode and silicon doped hafnium-based ferroelectric layer will produce void defects at the interfaces, causing increased leakage and compromising device performance. These void defects are caused by the volume contraction during the phase transition process, which leads to tension at the outer interface of the 3D ferroelectric capacitor structure. Due to the unavoidable structural stress, it is necessary to optimize the interface bonding energy. First principles simulation revealed insufficient binding energy between titanium nitride and silicon doped hafnium oxide ferroelectric materials, while introducing an amorphous alumina interface layer can effectively improve the binding ability. Experimental verification has confirmed that using an amorphous alumina interface layer as an adhesive layer can successfully solve the interface void defects, thereby improving the ferroelectric properties in three-dimensional structures.
期刊介绍:
The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.