{"title":"A two stage pipeline architecture for hardware implementation of multi-level decomposition of 1-D framelet transform","authors":"Kasetty Praveen Kumar, Aniruddha Kanhe","doi":"10.1016/j.micpro.2024.105064","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper a two stage pipeline architecture for computation of multilevel decomposition of framelet transform is proposed. To handle the problem of perfect reconstruction, an area efficient symmetric extension router is used that duplicates the appropriate number of data samples of input signal at the boundary followed by reflection about the symmetry axis. In addition, to reduce the period and number of clock cycles required for computing the framelet transform, the inter-stage and intrastage pipeline of the computational units is maximized. The inter-stage pipelining is obtained by distributing the various levels of decomposition among the computational units of two stages, and a synchronization mechanism is adopted to reduce the total number of clock cycles. Similarly, the intrastage pipelining is achieved by using the pipeline registers such that the clock period is limited to the delay of multiplier and accumulator (MAC) circuit of the finite-impulse response (FIR) filter. To validate the feasibility and functionality of the proposed hardware architecture, the design is implemented on Artix7 XC7A100TCSG324-1 field-programmable gate array (FPGA) for the case of framelet transform with one low-pass and two high-pass filters. The proposed architecture is able to operate at a maximum clock frequency of 112 MHz.</p></div>","PeriodicalId":49815,"journal":{"name":"Microprocessors and Microsystems","volume":"108 ","pages":"Article 105064"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microprocessors and Microsystems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141933124000590","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper a two stage pipeline architecture for computation of multilevel decomposition of framelet transform is proposed. To handle the problem of perfect reconstruction, an area efficient symmetric extension router is used that duplicates the appropriate number of data samples of input signal at the boundary followed by reflection about the symmetry axis. In addition, to reduce the period and number of clock cycles required for computing the framelet transform, the inter-stage and intrastage pipeline of the computational units is maximized. The inter-stage pipelining is obtained by distributing the various levels of decomposition among the computational units of two stages, and a synchronization mechanism is adopted to reduce the total number of clock cycles. Similarly, the intrastage pipelining is achieved by using the pipeline registers such that the clock period is limited to the delay of multiplier and accumulator (MAC) circuit of the finite-impulse response (FIR) filter. To validate the feasibility and functionality of the proposed hardware architecture, the design is implemented on Artix7 XC7A100TCSG324-1 field-programmable gate array (FPGA) for the case of framelet transform with one low-pass and two high-pass filters. The proposed architecture is able to operate at a maximum clock frequency of 112 MHz.
期刊介绍:
Microprocessors and Microsystems: Embedded Hardware Design (MICPRO) is a journal covering all design and architectural aspects related to embedded systems hardware. This includes different embedded system hardware platforms ranging from custom hardware via reconfigurable systems and application specific processors to general purpose embedded processors. Special emphasis is put on novel complex embedded architectures, such as systems on chip (SoC), systems on a programmable/reconfigurable chip (SoPC) and multi-processor systems on a chip (MPSoC), as well as, their memory and communication methods and structures, such as network-on-chip (NoC).
Design automation of such systems including methodologies, techniques, flows and tools for their design, as well as, novel designs of hardware components fall within the scope of this journal. Novel cyber-physical applications that use embedded systems are also central in this journal. While software is not in the main focus of this journal, methods of hardware/software co-design, as well as, application restructuring and mapping to embedded hardware platforms, that consider interplay between software and hardware components with emphasis on hardware, are also in the journal scope.