A two stage pipeline architecture for hardware implementation of multi-level decomposition of 1-D framelet transform

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Kasetty Praveen Kumar, Aniruddha Kanhe
{"title":"A two stage pipeline architecture for hardware implementation of multi-level decomposition of 1-D framelet transform","authors":"Kasetty Praveen Kumar,&nbsp;Aniruddha Kanhe","doi":"10.1016/j.micpro.2024.105064","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper a two stage pipeline architecture for computation of multilevel decomposition of framelet transform is proposed. To handle the problem of perfect reconstruction, an area efficient symmetric extension router is used that duplicates the appropriate number of data samples of input signal at the boundary followed by reflection about the symmetry axis. In addition, to reduce the period and number of clock cycles required for computing the framelet transform, the inter-stage and intrastage pipeline of the computational units is maximized. The inter-stage pipelining is obtained by distributing the various levels of decomposition among the computational units of two stages, and a synchronization mechanism is adopted to reduce the total number of clock cycles. Similarly, the intrastage pipelining is achieved by using the pipeline registers such that the clock period is limited to the delay of multiplier and accumulator (MAC) circuit of the finite-impulse response (FIR) filter. To validate the feasibility and functionality of the proposed hardware architecture, the design is implemented on Artix7 XC7A100TCSG324-1 field-programmable gate array (FPGA) for the case of framelet transform with one low-pass and two high-pass filters. The proposed architecture is able to operate at a maximum clock frequency of 112 MHz.</p></div>","PeriodicalId":49815,"journal":{"name":"Microprocessors and Microsystems","volume":"108 ","pages":"Article 105064"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microprocessors and Microsystems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141933124000590","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper a two stage pipeline architecture for computation of multilevel decomposition of framelet transform is proposed. To handle the problem of perfect reconstruction, an area efficient symmetric extension router is used that duplicates the appropriate number of data samples of input signal at the boundary followed by reflection about the symmetry axis. In addition, to reduce the period and number of clock cycles required for computing the framelet transform, the inter-stage and intrastage pipeline of the computational units is maximized. The inter-stage pipelining is obtained by distributing the various levels of decomposition among the computational units of two stages, and a synchronization mechanism is adopted to reduce the total number of clock cycles. Similarly, the intrastage pipelining is achieved by using the pipeline registers such that the clock period is limited to the delay of multiplier and accumulator (MAC) circuit of the finite-impulse response (FIR) filter. To validate the feasibility and functionality of the proposed hardware architecture, the design is implemented on Artix7 XC7A100TCSG324-1 field-programmable gate array (FPGA) for the case of framelet transform with one low-pass and two high-pass filters. The proposed architecture is able to operate at a maximum clock frequency of 112 MHz.

用于硬件实现一维小帧变换多级分解的两级流水线架构
本文提出了一种用于计算小帧变换多级分解的两级流水线架构。为处理完美重构问题,采用了一种面积高效的对称扩展路由器,在边界处复制适当数量的输入信号数据样本,然后绕对称轴进行反射。此外,为了减少计算小帧变换所需的周期和时钟周期数,计算单元的级间和级内流水线被最大限度地利用。级间流水线是通过将各级分解分配给两级计算单元来实现的,并采用同步机制来减少时钟周期总数。同样,级内流水线化是通过使用流水线寄存器实现的,这样时钟周期就被限制在有限脉冲响应(FIR)滤波器的乘法器和累加器(MAC)电路的延迟范围内。为了验证所提硬件架构的可行性和功能性,设计在 Artix7 XC7A100TCSG324-1 现场可编程门阵列(FPGA)上实现,用于带有一个低通和两个高通滤波器的小帧变换。所提出的架构能够在最高 112 MHz 的时钟频率下运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microprocessors and Microsystems
Microprocessors and Microsystems 工程技术-工程:电子与电气
CiteScore
6.90
自引率
3.80%
发文量
204
审稿时长
172 days
期刊介绍: Microprocessors and Microsystems: Embedded Hardware Design (MICPRO) is a journal covering all design and architectural aspects related to embedded systems hardware. This includes different embedded system hardware platforms ranging from custom hardware via reconfigurable systems and application specific processors to general purpose embedded processors. Special emphasis is put on novel complex embedded architectures, such as systems on chip (SoC), systems on a programmable/reconfigurable chip (SoPC) and multi-processor systems on a chip (MPSoC), as well as, their memory and communication methods and structures, such as network-on-chip (NoC). Design automation of such systems including methodologies, techniques, flows and tools for their design, as well as, novel designs of hardware components fall within the scope of this journal. Novel cyber-physical applications that use embedded systems are also central in this journal. While software is not in the main focus of this journal, methods of hardware/software co-design, as well as, application restructuring and mapping to embedded hardware platforms, that consider interplay between software and hardware components with emphasis on hardware, are also in the journal scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信