Intelligent detection of fastener defects and mixed assortments

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
{"title":"Intelligent detection of fastener defects and mixed assortments","authors":"","doi":"10.1016/j.icte.2024.05.006","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the use of artificial intelligence (AI) image detection and discrimination technology to address issues related to mixed assortments and defects encountered in the fastener manufacturing and packaging processes. The defect detection system primarily utilizes the YOLOv4-tiny model with parameter setting and data augmentation techniques. The mixed assortments detection system is constructed using U-Net-Light and Siamese network. The research results demonstrate that the developed systems can indeed replace or assist on-site personnel in conducting efficient and accurate inspections and screenings.</p></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 4","pages":"Pages 902-908"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405959524000560/pdfft?md5=66d5faa99da3e889e27b73ca8b782c6d&pid=1-s2.0-S2405959524000560-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959524000560","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the use of artificial intelligence (AI) image detection and discrimination technology to address issues related to mixed assortments and defects encountered in the fastener manufacturing and packaging processes. The defect detection system primarily utilizes the YOLOv4-tiny model with parameter setting and data augmentation techniques. The mixed assortments detection system is constructed using U-Net-Light and Siamese network. The research results demonstrate that the developed systems can indeed replace or assist on-site personnel in conducting efficient and accurate inspections and screenings.

智能检测紧固件缺陷和混合组件
本文研究了如何利用人工智能(AI)图像检测和判别技术来解决紧固件生产和包装过程中遇到的混装和缺陷问题。缺陷检测系统主要利用 YOLOv4-tiny 模型以及参数设置和数据增强技术。混合分类检测系统是利用 U-Net-Light 和连体网络构建的。研究结果表明,所开发的系统确实可以替代或协助现场人员进行高效、准确的检查和筛选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信