{"title":"Advancements on IoT and AI applied to Pneumology","authors":"Enrico Cambiaso , Sara Narteni , Ilaria Baiardini , Fulvio Braido , Alessia Paglialonga , Maurizio Mongelli","doi":"10.1016/j.micpro.2024.105062","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this work is the design of a technological platform for remote monitoring of patients with Chronic Obstructive Pulmonary Disease (COPD). The concept of the framework is a breakthrough in the state of medical, scientific and technological art, aimed at engaging patients in the treatment plan and supporting interaction with healthcare professionals. The proposed platform is able to support a new paradigm for the management of patients with COPD, by integrating clinical data and parameters monitored in daily life using Artificial Intelligence algorithms. Therefore, the doctor is provided with a dynamic picture of the disease and its impact on lifestyle and vice versa, and can thus plan more personalized diagnostics, therapeutics, and social interventions. This strategy allows for a more effective organization of access to outpatient care and therefore a reduction of emergencies and hospitalizations because exacerbations of the disease can be better prevented and monitored. Hence, it can result in improvements in patients’ quality of life and lower costs for the healthcare system.</p></div>","PeriodicalId":49815,"journal":{"name":"Microprocessors and Microsystems","volume":"108 ","pages":"Article 105062"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0141933124000577/pdfft?md5=04b32d737cc9dd247636adf8505b415a&pid=1-s2.0-S0141933124000577-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microprocessors and Microsystems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141933124000577","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this work is the design of a technological platform for remote monitoring of patients with Chronic Obstructive Pulmonary Disease (COPD). The concept of the framework is a breakthrough in the state of medical, scientific and technological art, aimed at engaging patients in the treatment plan and supporting interaction with healthcare professionals. The proposed platform is able to support a new paradigm for the management of patients with COPD, by integrating clinical data and parameters monitored in daily life using Artificial Intelligence algorithms. Therefore, the doctor is provided with a dynamic picture of the disease and its impact on lifestyle and vice versa, and can thus plan more personalized diagnostics, therapeutics, and social interventions. This strategy allows for a more effective organization of access to outpatient care and therefore a reduction of emergencies and hospitalizations because exacerbations of the disease can be better prevented and monitored. Hence, it can result in improvements in patients’ quality of life and lower costs for the healthcare system.
期刊介绍:
Microprocessors and Microsystems: Embedded Hardware Design (MICPRO) is a journal covering all design and architectural aspects related to embedded systems hardware. This includes different embedded system hardware platforms ranging from custom hardware via reconfigurable systems and application specific processors to general purpose embedded processors. Special emphasis is put on novel complex embedded architectures, such as systems on chip (SoC), systems on a programmable/reconfigurable chip (SoPC) and multi-processor systems on a chip (MPSoC), as well as, their memory and communication methods and structures, such as network-on-chip (NoC).
Design automation of such systems including methodologies, techniques, flows and tools for their design, as well as, novel designs of hardware components fall within the scope of this journal. Novel cyber-physical applications that use embedded systems are also central in this journal. While software is not in the main focus of this journal, methods of hardware/software co-design, as well as, application restructuring and mapping to embedded hardware platforms, that consider interplay between software and hardware components with emphasis on hardware, are also in the journal scope.