Jorge Eduardo Morales-Avalos , Rodolfo Morales-Avalos , Karla V. Martínez-Guajardo , Simone Perelli , Joan Carles Monllau , Antonio J. Sánchez Egea , Gil Serrancolí
{"title":"In-silico study of the biomechanical effects of proximal-fibular osteotomy on knee joint contact pressure in varus-valgus misalignment","authors":"Jorge Eduardo Morales-Avalos , Rodolfo Morales-Avalos , Karla V. Martínez-Guajardo , Simone Perelli , Joan Carles Monllau , Antonio J. Sánchez Egea , Gil Serrancolí","doi":"10.1016/j.medengphy.2024.104185","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this work is to investigate in-silico the biomechanical effects of a proximal fibular osteotomy (PFO) on a knee joint with different varus/valgus deformities on the progression of knee osteoarthritis (KOA). A finite element analysis (FEA) of a human lower extremity consisting of the femoral, tibial and fibular bones and the cartilage connecting them was designed. The FEA was performed in a static standing primitive position to determine the contact pressure (CP) distribution and the location of the center of pressure (CoP). The analysis examined the relationship between these factors and the degree of deformation of the hip-knee angle in the baseline condition. The results suggested that PFO could be a simple and effective surgical treatment for patients with associated genu varum. This work also reported that a possible CP homogenization and a CoP correction can be achieved for medial varus deformities after PFO. However, it reduced its effectiveness for tibial origin valgus misalignment and worsened in cases of femoral valgus misalignment.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350453324000869/pdfft?md5=2056f048a48b3d9870ca549f7aaa7837&pid=1-s2.0-S1350453324000869-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324000869","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this work is to investigate in-silico the biomechanical effects of a proximal fibular osteotomy (PFO) on a knee joint with different varus/valgus deformities on the progression of knee osteoarthritis (KOA). A finite element analysis (FEA) of a human lower extremity consisting of the femoral, tibial and fibular bones and the cartilage connecting them was designed. The FEA was performed in a static standing primitive position to determine the contact pressure (CP) distribution and the location of the center of pressure (CoP). The analysis examined the relationship between these factors and the degree of deformation of the hip-knee angle in the baseline condition. The results suggested that PFO could be a simple and effective surgical treatment for patients with associated genu varum. This work also reported that a possible CP homogenization and a CoP correction can be achieved for medial varus deformities after PFO. However, it reduced its effectiveness for tibial origin valgus misalignment and worsened in cases of femoral valgus misalignment.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.