Mohammad Tirgariseraji, A. Pouyan Nejadhashemi, Yaghoob Jafari, Tomas Persson, Mahmood Sabouhi Sabouni, Alisher Mirzabaev, Alireza Nikouei, Naser Shahnoushi Froshani
{"title":"Exploring the instability in the food security due to nitrogen fertilizer regulatory policy","authors":"Mohammad Tirgariseraji, A. Pouyan Nejadhashemi, Yaghoob Jafari, Tomas Persson, Mahmood Sabouhi Sabouni, Alisher Mirzabaev, Alireza Nikouei, Naser Shahnoushi Froshani","doi":"10.1002/fes3.549","DOIUrl":null,"url":null,"abstract":"<p>The nitrogen regulatory policy (NRP) solution is introduced as a mitigation measure against environmental nitrogen losses and keeps food production in the Safe Operating Space of the Nitrogen Planetary Boundary. Meanwhile, scientific research shows that steps taken to reduce environmental harm can increase the unpredictability of calorie production from crops. This study sought to investigate the impact of NRP solutions on the level of risk of accessibility to calorie sources from domestic production, the variations in calorie sources by livestock and non-livestock diet components, and the responses of different dietary preferences, namely, poor, medium, and rich livestock protein diets, against NRP solutions in the Zayandeh-Rud River basin, Iran. We developed the aggregate household food security index (AHFSI) and combined it with outputs of crop simulation model to examine how changes in dietary energy supplies under three NRP scenarios—low, moderate, and high nitrogen fertilizer application—affect the stability of three regional dietary preferences. The comparison of NRP scenarios movements realized that increases (or decreases) in nitrogen fertilizer rates contradicted the stability in AHFSI. Additionally, a one-unit change in the average calories from non-livestock sources, such as wheat and potatoes, results in greater fluctuations in the standard deviations of produced calories compared to changes in meat and dairy production. We proposed that in order to prevent adverse effects of NRP solutions on food security, mitigation strategies addressing the NRP solution should be structured based on (i) regional heterogeneities, (ii) type of crops, that is, food and feed crops, (iii) the range of nitrogen rates movement; (iv) and the socioeconomic background related to dietary preferences or economic deciles of food expenditure.</p>","PeriodicalId":54283,"journal":{"name":"Food and Energy Security","volume":"13 3","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.549","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Energy Security","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fes3.549","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The nitrogen regulatory policy (NRP) solution is introduced as a mitigation measure against environmental nitrogen losses and keeps food production in the Safe Operating Space of the Nitrogen Planetary Boundary. Meanwhile, scientific research shows that steps taken to reduce environmental harm can increase the unpredictability of calorie production from crops. This study sought to investigate the impact of NRP solutions on the level of risk of accessibility to calorie sources from domestic production, the variations in calorie sources by livestock and non-livestock diet components, and the responses of different dietary preferences, namely, poor, medium, and rich livestock protein diets, against NRP solutions in the Zayandeh-Rud River basin, Iran. We developed the aggregate household food security index (AHFSI) and combined it with outputs of crop simulation model to examine how changes in dietary energy supplies under three NRP scenarios—low, moderate, and high nitrogen fertilizer application—affect the stability of three regional dietary preferences. The comparison of NRP scenarios movements realized that increases (or decreases) in nitrogen fertilizer rates contradicted the stability in AHFSI. Additionally, a one-unit change in the average calories from non-livestock sources, such as wheat and potatoes, results in greater fluctuations in the standard deviations of produced calories compared to changes in meat and dairy production. We proposed that in order to prevent adverse effects of NRP solutions on food security, mitigation strategies addressing the NRP solution should be structured based on (i) regional heterogeneities, (ii) type of crops, that is, food and feed crops, (iii) the range of nitrogen rates movement; (iv) and the socioeconomic background related to dietary preferences or economic deciles of food expenditure.
期刊介绍:
Food and Energy Security seeks to publish high quality and high impact original research on agricultural crop and forest productivity to improve food and energy security. It actively seeks submissions from emerging countries with expanding agricultural research communities. Papers from China, other parts of Asia, India and South America are particularly welcome. The Editorial Board, headed by Editor-in-Chief Professor Martin Parry, is determined to make FES the leading publication in its sector and will be aiming for a top-ranking impact factor.
Primary research articles should report hypothesis driven investigations that provide new insights into mechanisms and processes that determine productivity and properties for exploitation. Review articles are welcome but they must be critical in approach and provide particularly novel and far reaching insights.
Food and Energy Security offers authors a forum for the discussion of the most important advances in this field and promotes an integrative approach of scientific disciplines. Papers must contribute substantially to the advancement of knowledge.
Examples of areas covered in Food and Energy Security include:
• Agronomy
• Biotechnological Approaches
• Breeding & Genetics
• Climate Change
• Quality and Composition
• Food Crops and Bioenergy Feedstocks
• Developmental, Physiology and Biochemistry
• Functional Genomics
• Molecular Biology
• Pest and Disease Management
• Post Harvest Biology
• Soil Science
• Systems Biology