Carlos Raúl Ramírez Medina, Mengyu Feng, Yun-Ting Huang, David A Jenkins, Meghna Jani
{"title":"Machine learning identifies risk factors associated with long-term opioid use in fibromyalgia patients newly initiated on an opioid.","authors":"Carlos Raúl Ramírez Medina, Mengyu Feng, Yun-Ting Huang, David A Jenkins, Meghna Jani","doi":"10.1136/rmdopen-2024-004232","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Fibromyalgia is frequently treated with opioids due to limited therapeutic options. Long-term opioid use is associated with several adverse outcomes. Identifying factors associated with long-term opioid use is the first step in developing targeted interventions. The aim of this study was to evaluate risk factors in fibromyalgia patients newly initiated on opioids using machine learning.</p><p><strong>Methods: </strong>A retrospective cohort study was conducted using a nationally representative primary care dataset from the UK, from the Clinical Research Practice Datalink. Fibromyalgia patients without prior cancer who were new opioid users were included. Logistic regression, a random forest model and Boruta feature selection were used to identify risk factors related to long-term opioid use. Adjusted ORs (aORs) and feature importance scores were calculated to gauge the strength of these associations.</p><p><strong>Results: </strong>In this study, 28 552 fibromyalgia patients initiating opioids were identified of which 7369 patients (26%) had long-term opioid use. High initial opioid dose (aOR: 31.96, mean decrease accuracy (MDA) 135), history of self-harm (aOR: 2.01, MDA 44), obesity (aOR: 2.43, MDA 36), high deprivation (aOR: 2.00, MDA 31) and substance use disorder (aOR: 2.08, MDA 25) were the factors most strongly associated with long-term use.</p><p><strong>Conclusions: </strong>High dose of initial opioid prescription, a history of self-harm, obesity, high deprivation, substance use disorder and age were associated with long-term opioid use. This study underscores the importance of recognising these individual risk factors in fibromyalgia patients to better navigate the complexities of opioid use and facilitate patient-centred care.</p>","PeriodicalId":21396,"journal":{"name":"RMD Open","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11308899/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RMD Open","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/rmdopen-2024-004232","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RHEUMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Fibromyalgia is frequently treated with opioids due to limited therapeutic options. Long-term opioid use is associated with several adverse outcomes. Identifying factors associated with long-term opioid use is the first step in developing targeted interventions. The aim of this study was to evaluate risk factors in fibromyalgia patients newly initiated on opioids using machine learning.
Methods: A retrospective cohort study was conducted using a nationally representative primary care dataset from the UK, from the Clinical Research Practice Datalink. Fibromyalgia patients without prior cancer who were new opioid users were included. Logistic regression, a random forest model and Boruta feature selection were used to identify risk factors related to long-term opioid use. Adjusted ORs (aORs) and feature importance scores were calculated to gauge the strength of these associations.
Results: In this study, 28 552 fibromyalgia patients initiating opioids were identified of which 7369 patients (26%) had long-term opioid use. High initial opioid dose (aOR: 31.96, mean decrease accuracy (MDA) 135), history of self-harm (aOR: 2.01, MDA 44), obesity (aOR: 2.43, MDA 36), high deprivation (aOR: 2.00, MDA 31) and substance use disorder (aOR: 2.08, MDA 25) were the factors most strongly associated with long-term use.
Conclusions: High dose of initial opioid prescription, a history of self-harm, obesity, high deprivation, substance use disorder and age were associated with long-term opioid use. This study underscores the importance of recognising these individual risk factors in fibromyalgia patients to better navigate the complexities of opioid use and facilitate patient-centred care.
期刊介绍:
RMD Open publishes high quality peer-reviewed original research covering the full spectrum of musculoskeletal disorders, rheumatism and connective tissue diseases, including osteoporosis, spine and rehabilitation. Clinical and epidemiological research, basic and translational medicine, interesting clinical cases, and smaller studies that add to the literature are all considered.