{"title":"Superior ablation resistance of C/C–HfCSiC composite sharp leading edges above 2500 °C prepared by precursor infiltration and pyrolysis","authors":"","doi":"10.1016/j.jmat.2024.04.005","DOIUrl":null,"url":null,"abstract":"<div><div>HfC<img>SiC-modified carbon/carbon composite (C/C–HfC<img>SiC) sharp leading edges (SLEs) were prepared <em>via</em> precursor infiltration and pyrolysis for potential hypersonic applications. The effect of SiC proportion on the ablation behavior of the SLEs under oxyacetylene flames with 2.38 MW/m<sup>2</sup> and 4.18 MW/m<sup>2</sup> was investigated. The preferred sample with a volume ratio of HfC to SiC of 0.74 possessed almost zero degradation (linear recession rate 0.6 μm/s) up to a temperature of 2371 °C. As the temperature increases to 2527 °C in the latter condition, the SLE with less SiC (the volume ratio of HfC to SiC is 1.10) exhibited a linear recession rate of 1.03 μm/s during cyclic ablation of 3 × 40 s. Relatively more SiC addition is favorable under lower heat flux due to the better oxygen barrier performance of the scale. However, superior ablation resistance is available under higher heat flux with less SiC addition due to the higher thermal stability of the resulting oxide scale.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 2","pages":"Article 100879"},"PeriodicalIF":8.4000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352847824001047","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
HfCSiC-modified carbon/carbon composite (C/C–HfCSiC) sharp leading edges (SLEs) were prepared via precursor infiltration and pyrolysis for potential hypersonic applications. The effect of SiC proportion on the ablation behavior of the SLEs under oxyacetylene flames with 2.38 MW/m2 and 4.18 MW/m2 was investigated. The preferred sample with a volume ratio of HfC to SiC of 0.74 possessed almost zero degradation (linear recession rate 0.6 μm/s) up to a temperature of 2371 °C. As the temperature increases to 2527 °C in the latter condition, the SLE with less SiC (the volume ratio of HfC to SiC is 1.10) exhibited a linear recession rate of 1.03 μm/s during cyclic ablation of 3 × 40 s. Relatively more SiC addition is favorable under lower heat flux due to the better oxygen barrier performance of the scale. However, superior ablation resistance is available under higher heat flux with less SiC addition due to the higher thermal stability of the resulting oxide scale.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.