{"title":"Effect of novel composite materials on human injury and rehabilitation training in athletic long jump sports","authors":"Yu’e Liu, Yuyan Liu","doi":"10.1166/mex.2024.2666","DOIUrl":null,"url":null,"abstract":"Articular cartilage injuries are prevalent in track and field long jump and can affect an athlete’s health. However, current therapeutic options cannot effectively repair the damaged cartilage tissue. It is important to find alternative treatment methods that can provide better\n results for injured athletes. In this study, carbon nanofibers (CNFs) were employed to enhance the properties of hyaluronic acid (HA) and develop nanocomposite hydrogel scaffolds. Bone marrow mesenchymal stem cells extracted from the joints of experimental mice were subsequently loaded onto\n the CNFs-HA scaffolds and evaluated for bioactivity and repair capacity. The TEM photographs of CNFs-MA displayed an orderly arrangement of fibers. Observing the FT-IR spectral characteristics of CNFs-MA revealed a telescopic vibration peak at 1700 cm−1. CNFs-HA demonstrated\n a rapid increase in cartilage damage repair score after 15 days, and at 1 month, the joint damage repair score of CNFs-HA was significantly different from that of pure HA and the untreated group. Based on the foregoing results, it can be inferred that CNFs-HA, as prepared, is biocompatible\n and efficacious in treating articular cartilage tissue injury. Furthermore, this study this study provides a reliable solution for cartilage injury treatment and establishes an experimental basis for its clinical management.","PeriodicalId":18318,"journal":{"name":"Materials Express","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1166/mex.2024.2666","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Articular cartilage injuries are prevalent in track and field long jump and can affect an athlete’s health. However, current therapeutic options cannot effectively repair the damaged cartilage tissue. It is important to find alternative treatment methods that can provide better
results for injured athletes. In this study, carbon nanofibers (CNFs) were employed to enhance the properties of hyaluronic acid (HA) and develop nanocomposite hydrogel scaffolds. Bone marrow mesenchymal stem cells extracted from the joints of experimental mice were subsequently loaded onto
the CNFs-HA scaffolds and evaluated for bioactivity and repair capacity. The TEM photographs of CNFs-MA displayed an orderly arrangement of fibers. Observing the FT-IR spectral characteristics of CNFs-MA revealed a telescopic vibration peak at 1700 cm−1. CNFs-HA demonstrated
a rapid increase in cartilage damage repair score after 15 days, and at 1 month, the joint damage repair score of CNFs-HA was significantly different from that of pure HA and the untreated group. Based on the foregoing results, it can be inferred that CNFs-HA, as prepared, is biocompatible
and efficacious in treating articular cartilage tissue injury. Furthermore, this study this study provides a reliable solution for cartilage injury treatment and establishes an experimental basis for its clinical management.