Lingli Zhang, Zhikun Wang, Yuan Zhang, Rui Ji, Zhiben Li, Jun Zou, Bo Gao
{"title":"Regulatory cellular and molecular networks in the bone microenvironment during aging","authors":"Lingli Zhang, Zhikun Wang, Yuan Zhang, Rui Ji, Zhiben Li, Jun Zou, Bo Gao","doi":"10.1093/lifemedi/lnae019","DOIUrl":null,"url":null,"abstract":"\n Age-induced abnormalities in bone metabolism disrupt the equilibrium between bone resorption and formation. This largely stems from disturbances in bone homeostasis, in which signaling pathways exert a significant regulatory influence. Aging compromises the functionality of the bone marrow mesenchymal stem cells (BMSCs), ultimately resulting in tissue dysfunction and pathological aging. Age-related bone degradation primarily manifests as reduced bone formation and the increased accumulation of bone marrow fat. Cellular senescence diminishes bone cell vitality, thereby disrupting the balance of bone remodeling. Intensive osteoclast differentiation leads to the generation of more osteoclasts and increased bone resorption. This review provides insight into the impact of aging on bone, encompassing bone cell states during the aging process and bone signaling pathway transformations. It primarily delves into aging-related signaling pathways, such as the bone morphogenetic protein/Smad, Wnt/β-catenin, osteoprotegerin/receptor activator of NF-κB ligand/receptor activator of NF-κB, connexin43/miR21, and nuclear factor erythroid 2-related factor 2/antioxidant response element pathways, seeking to enhance our comprehension of crucial bone cells and their secretory phenotypes during aging. Furthermore, the precise molecular regulatory mechanisms underlying the interactions between bone signaling pathways and aging are investigated.","PeriodicalId":74073,"journal":{"name":"Life medicine","volume":"78 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/lifemedi/lnae019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Age-induced abnormalities in bone metabolism disrupt the equilibrium between bone resorption and formation. This largely stems from disturbances in bone homeostasis, in which signaling pathways exert a significant regulatory influence. Aging compromises the functionality of the bone marrow mesenchymal stem cells (BMSCs), ultimately resulting in tissue dysfunction and pathological aging. Age-related bone degradation primarily manifests as reduced bone formation and the increased accumulation of bone marrow fat. Cellular senescence diminishes bone cell vitality, thereby disrupting the balance of bone remodeling. Intensive osteoclast differentiation leads to the generation of more osteoclasts and increased bone resorption. This review provides insight into the impact of aging on bone, encompassing bone cell states during the aging process and bone signaling pathway transformations. It primarily delves into aging-related signaling pathways, such as the bone morphogenetic protein/Smad, Wnt/β-catenin, osteoprotegerin/receptor activator of NF-κB ligand/receptor activator of NF-κB, connexin43/miR21, and nuclear factor erythroid 2-related factor 2/antioxidant response element pathways, seeking to enhance our comprehension of crucial bone cells and their secretory phenotypes during aging. Furthermore, the precise molecular regulatory mechanisms underlying the interactions between bone signaling pathways and aging are investigated.