Novel Probabilistic Collision Detection for Manipulator Motion Planning Using HNSW

Machines Pub Date : 2024-05-07 DOI:10.3390/machines12050321
Xiaofeng Zhang, Bo Tao, Du Jiang, Baojia Chen, Dalai Tang, Xin Liu
{"title":"Novel Probabilistic Collision Detection for Manipulator Motion Planning Using HNSW","authors":"Xiaofeng Zhang, Bo Tao, Du Jiang, Baojia Chen, Dalai Tang, Xin Liu","doi":"10.3390/machines12050321","DOIUrl":null,"url":null,"abstract":"Collision detection is very important for robot motion planning. The existing accurate collision detection algorithms regard the evaluation of each node as a discrete event, ignoring the correlation between nodes, resulting in low efficiency. In this paper, we propose a novel approach that transforms collision detection into a binary classification problem. In particular, the proposed method searches the k-nearest neighbor (KNN) of the new node and estimates its collision probability by the prior node. We perform the hierarchical navigable small world (HNSW) method to query the nearest neighbor data and store the detected nodes to build the database incrementally. In addition, this research develops a KNN query technique tailored for linear data, incorporating threshold segmentation to facilitate collision detection along continuous paths. Moreover, it refines the distance function of the collision classifier to enhance the precision of probability estimations. Simulation results demonstrate the effectiveness of the proposed method.","PeriodicalId":509264,"journal":{"name":"Machines","volume":"25 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/machines12050321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Collision detection is very important for robot motion planning. The existing accurate collision detection algorithms regard the evaluation of each node as a discrete event, ignoring the correlation between nodes, resulting in low efficiency. In this paper, we propose a novel approach that transforms collision detection into a binary classification problem. In particular, the proposed method searches the k-nearest neighbor (KNN) of the new node and estimates its collision probability by the prior node. We perform the hierarchical navigable small world (HNSW) method to query the nearest neighbor data and store the detected nodes to build the database incrementally. In addition, this research develops a KNN query technique tailored for linear data, incorporating threshold segmentation to facilitate collision detection along continuous paths. Moreover, it refines the distance function of the collision classifier to enhance the precision of probability estimations. Simulation results demonstrate the effectiveness of the proposed method.
使用 HNSW 进行机械手运动规划的新型概率碰撞检测
碰撞检测对于机器人运动规划非常重要。现有的精确碰撞检测算法将每个节点的评估视为离散事件,忽略了节点之间的相关性,导致效率低下。在本文中,我们提出了一种将碰撞检测转化为二元分类问题的新方法。具体而言,所提出的方法会搜索新节点的 k 近邻 (KNN),并通过先前节点估计其碰撞概率。我们采用分层可导航小世界(HNSW)方法来查询近邻数据,并存储检测到的节点,以增量方式建立数据库。此外,本研究还开发了一种专为线性数据定制的 KNN 查询技术,并结合了阈值分割技术,以促进沿连续路径的碰撞检测。此外,它还改进了碰撞分类器的距离函数,以提高概率估计的精度。仿真结果证明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信