Bhakta Prasad Gaire, Yosef Koronyo, Dieu-Trang Fuchs, Haoshen Shi, Altan Rentsendorj, Ron Danziger, Jean-Philippe Vit, Nazanin Mirzaei, Jonah Doustar, Julia Sheyn, Harald Hampel, Andrea Vergallo, Miyah R Davis, Ousman Jallow, Filippo Baldacci, Steven R Verdooner, Ernesto Barron, Mehdi Mirzaei, Vivek K Gupta, Stuart L Graham, Mourad Tayebi, Roxana O Carare, Alfredo A Sadun, Carol A Miller, Oana M Dumitrascu, Shouri Lahiri, Liang Gao, Keith L Black, Maya Koronyo-Hamaoui
{"title":"Alzheimer's disease pathophysiology in the Retina.","authors":"Bhakta Prasad Gaire, Yosef Koronyo, Dieu-Trang Fuchs, Haoshen Shi, Altan Rentsendorj, Ron Danziger, Jean-Philippe Vit, Nazanin Mirzaei, Jonah Doustar, Julia Sheyn, Harald Hampel, Andrea Vergallo, Miyah R Davis, Ousman Jallow, Filippo Baldacci, Steven R Verdooner, Ernesto Barron, Mehdi Mirzaei, Vivek K Gupta, Stuart L Graham, Mourad Tayebi, Roxana O Carare, Alfredo A Sadun, Carol A Miller, Oana M Dumitrascu, Shouri Lahiri, Liang Gao, Keith L Black, Maya Koronyo-Hamaoui","doi":"10.1016/j.preteyeres.2024.101273","DOIUrl":null,"url":null,"abstract":"<p><p>The retina is an emerging CNS target for potential noninvasive diagnosis and tracking of Alzheimer's disease (AD). Studies have identified the pathological hallmarks of AD, including amyloid β-protein (Aβ) deposits and abnormal tau protein isoforms, in the retinas of AD patients and animal models. Moreover, structural and functional vascular abnormalities such as reduced blood flow, vascular Aβ deposition, and blood-retinal barrier damage, along with inflammation and neurodegeneration, have been described in retinas of patients with mild cognitive impairment and AD dementia. Histological, biochemical, and clinical studies have demonstrated that the nature and severity of AD pathologies in the retina and brain correspond. Proteomics analysis revealed a similar pattern of dysregulated proteins and biological pathways in the retina and brain of AD patients, with enhanced inflammatory and neurodegenerative processes, impaired oxidative-phosphorylation, and mitochondrial dysfunction. Notably, investigational imaging technologies can now detect AD-specific amyloid deposits, as well as vasculopathy and neurodegeneration in the retina of living AD patients, suggesting alterations at different disease stages and links to brain pathology. Current and exploratory ophthalmic imaging modalities, such as optical coherence tomography (OCT), OCT-angiography, confocal scanning laser ophthalmoscopy, and hyperspectral imaging, may offer promise in the clinical assessment of AD. However, further research is needed to deepen our understanding of AD's impact on the retina and its progression. To advance this field, future studies require replication in larger and diverse cohorts with confirmed AD biomarkers and standardized retinal imaging techniques. This will validate potential retinal biomarkers for AD, aiding in early screening and monitoring.</p>","PeriodicalId":21159,"journal":{"name":"Progress in Retinal and Eye Research","volume":" ","pages":"101273"},"PeriodicalIF":18.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285518/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Retinal and Eye Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.preteyeres.2024.101273","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The retina is an emerging CNS target for potential noninvasive diagnosis and tracking of Alzheimer's disease (AD). Studies have identified the pathological hallmarks of AD, including amyloid β-protein (Aβ) deposits and abnormal tau protein isoforms, in the retinas of AD patients and animal models. Moreover, structural and functional vascular abnormalities such as reduced blood flow, vascular Aβ deposition, and blood-retinal barrier damage, along with inflammation and neurodegeneration, have been described in retinas of patients with mild cognitive impairment and AD dementia. Histological, biochemical, and clinical studies have demonstrated that the nature and severity of AD pathologies in the retina and brain correspond. Proteomics analysis revealed a similar pattern of dysregulated proteins and biological pathways in the retina and brain of AD patients, with enhanced inflammatory and neurodegenerative processes, impaired oxidative-phosphorylation, and mitochondrial dysfunction. Notably, investigational imaging technologies can now detect AD-specific amyloid deposits, as well as vasculopathy and neurodegeneration in the retina of living AD patients, suggesting alterations at different disease stages and links to brain pathology. Current and exploratory ophthalmic imaging modalities, such as optical coherence tomography (OCT), OCT-angiography, confocal scanning laser ophthalmoscopy, and hyperspectral imaging, may offer promise in the clinical assessment of AD. However, further research is needed to deepen our understanding of AD's impact on the retina and its progression. To advance this field, future studies require replication in larger and diverse cohorts with confirmed AD biomarkers and standardized retinal imaging techniques. This will validate potential retinal biomarkers for AD, aiding in early screening and monitoring.
视网膜是一种新兴的中枢神经系统靶点,可用于阿尔茨海默病(AD)的潜在无创诊断和追踪。研究已在阿尔茨海默病患者和动物模型的视网膜中发现了阿尔茨海默病的病理特征,包括淀粉样β蛋白(Aβ)沉积和 tau 蛋白异构体异常。此外,在轻度认知障碍和 AD 痴呆症患者的视网膜中也发现了血管结构和功能异常,如血流量减少、血管 Aβ 沉积、血液-视网膜屏障损伤,以及炎症和神经变性。组织学、生物化学和临床研究表明,视网膜和大脑中的 AD 病变的性质和严重程度是一致的。蛋白质组学分析表明,AD 患者视网膜和大脑中的蛋白质和生物通路的失调模式相似,炎症和神经退行性过程增强,氧化磷酸化受损,线粒体功能障碍。值得注意的是,研究性成像技术现在可以检测到 AD 特异性淀粉样蛋白沉积,以及在世 AD 患者视网膜中的血管病变和神经变性,这表明不同疾病阶段的改变以及与大脑病理学的联系。光学相干断层扫描(OCT)、OCT 血管造影术、共焦扫描激光眼底镜和高光谱成像等当前和探索性的眼科成像模式可能会为 AD 的临床评估带来希望。然而,我们还需要进一步的研究来加深了解注意力缺失症对视网膜的影响及其进展。为了推动这一领域的研究,未来的研究需要在更大范围和更多样化的群体中进行复制,并使用已确认的注意力缺失症生物标志物和标准化视网膜成像技术。这将验证潜在的注意力缺失症视网膜生物标志物,有助于早期筛查和监测。
期刊介绍:
Progress in Retinal and Eye Research is a Reviews-only journal. By invitation, leading experts write on basic and clinical aspects of the eye in a style appealing to molecular biologists, neuroscientists and physiologists, as well as to vision researchers and ophthalmologists.
The journal covers all aspects of eye research, including topics pertaining to the retina and pigment epithelial layer, cornea, tears, lacrimal glands, aqueous humour, iris, ciliary body, trabeculum, lens, vitreous humour and diseases such as dry-eye, inflammation, keratoconus, corneal dystrophy, glaucoma and cataract.