Bingxin Kang , Jie Ma , Jun Shen , Chi Zhao , Xuyun Hua , Guowei Qiu , Xinyu A , Hui Xu , Jianguang Xu , Lianbo Xiao
{"title":"Hemisphere lateralization of graph theoretical network in end-stage knee osteoarthritis patients","authors":"Bingxin Kang , Jie Ma , Jun Shen , Chi Zhao , Xuyun Hua , Guowei Qiu , Xinyu A , Hui Xu , Jianguang Xu , Lianbo Xiao","doi":"10.1016/j.brainresbull.2024.110976","DOIUrl":null,"url":null,"abstract":"<div><p>Hemisphere functional lateralization is a prominent feature of the human brain. However, it is not known whether hemispheric lateralization features are altered in end-stage knee osteoarthritis (esKOA). In this study, we performed resting-state functional magnetic imaging on 46 esKOA patients and 31 healthy controls (HCs) and compared with the global and inter-hemisphere network to clarify the hemispheric functional network lateralization characteristics of patients. A correlation analysis was performed to explore the relationship between the inter-hemispheric network parameters and clinical features of patients. The node attributes were analyzed to explore the factors changing in the hemisphere network function lateralization in patients. We found that patients and HCs exhibited “small-world” brain network topology. Clustering coefficient increased in patients compared with that in HCs. The hemisphere difference in inter-hemispheric parameters including assortativity, global efficiency, local efficiency, clustering coefficients, small-worldness, and shortest path length. The pain course and intensity of esKOA were positively correlated with the right hemispheric lateralization in local efficiency, clustering coefficients, and the small-worldness, respectively. The significant alterations of several nodal properties were demonstrated within group in pain-cognition, pain-emotion, and pain regulation circuits. The abnormal lateralization inter-hemisphere network may be caused by the destruction of regional network properties.</p></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0361923024001096/pdfft?md5=47e3bab8e0a702b0ef638602b3b67927&pid=1-s2.0-S0361923024001096-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923024001096","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hemisphere functional lateralization is a prominent feature of the human brain. However, it is not known whether hemispheric lateralization features are altered in end-stage knee osteoarthritis (esKOA). In this study, we performed resting-state functional magnetic imaging on 46 esKOA patients and 31 healthy controls (HCs) and compared with the global and inter-hemisphere network to clarify the hemispheric functional network lateralization characteristics of patients. A correlation analysis was performed to explore the relationship between the inter-hemispheric network parameters and clinical features of patients. The node attributes were analyzed to explore the factors changing in the hemisphere network function lateralization in patients. We found that patients and HCs exhibited “small-world” brain network topology. Clustering coefficient increased in patients compared with that in HCs. The hemisphere difference in inter-hemispheric parameters including assortativity, global efficiency, local efficiency, clustering coefficients, small-worldness, and shortest path length. The pain course and intensity of esKOA were positively correlated with the right hemispheric lateralization in local efficiency, clustering coefficients, and the small-worldness, respectively. The significant alterations of several nodal properties were demonstrated within group in pain-cognition, pain-emotion, and pain regulation circuits. The abnormal lateralization inter-hemisphere network may be caused by the destruction of regional network properties.
期刊介绍:
The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.