An Online Monitoring Method for Bond Wire Fatigue in IGBT Module

IF 2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Hongtao Liu;Fei Wang;Xiaokang Zhang;Weiyi Xia;Lintao Ren
{"title":"An Online Monitoring Method for Bond Wire Fatigue in IGBT Module","authors":"Hongtao Liu;Fei Wang;Xiaokang Zhang;Weiyi Xia;Lintao Ren","doi":"10.1109/JEDS.2024.3399554","DOIUrl":null,"url":null,"abstract":"IGBT modules are core components of power electronic converters, and their reliability has gained significant attention. Among various reliability concerns, bond wire fatigue is a prominent issue. Bond wire fatigue can alter the electrical characteristics of IGBT modules, affecting the turn-off process of the IGBT. Consequently, it leads to changes in the collector-emitter voltage spike and the auxiliary emitter-emitter voltage spike during the turn-off process. The paper proposes the utilization of the K factor parameter which is not affected by the collector current and junction temperature, based on the collector-emitter voltage spike and the auxiliary emitter-emitter voltage spike, for bond wire fatigue monitoring of IGBT modules. Additionally, the monitoring of bond wire fatigue and junction temperature of IGBT modules was achieved based on the K factor parameter and the auxiliary emitter-emitter voltage spike. This provides a basis for the reliability assessment of IGBT modules.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10529136","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10529136/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

IGBT modules are core components of power electronic converters, and their reliability has gained significant attention. Among various reliability concerns, bond wire fatigue is a prominent issue. Bond wire fatigue can alter the electrical characteristics of IGBT modules, affecting the turn-off process of the IGBT. Consequently, it leads to changes in the collector-emitter voltage spike and the auxiliary emitter-emitter voltage spike during the turn-off process. The paper proposes the utilization of the K factor parameter which is not affected by the collector current and junction temperature, based on the collector-emitter voltage spike and the auxiliary emitter-emitter voltage spike, for bond wire fatigue monitoring of IGBT modules. Additionally, the monitoring of bond wire fatigue and junction temperature of IGBT modules was achieved based on the K factor parameter and the auxiliary emitter-emitter voltage spike. This provides a basis for the reliability assessment of IGBT modules.
IGBT 模块中键合线疲劳的在线监测方法
IGBT 模块是电力电子转换器的核心部件,其可靠性已受到广泛关注。在各种可靠性问题中,键合线疲劳是一个突出问题。键合线疲劳会改变 IGBT 模块的电气特性,影响 IGBT 的关断过程。因此,它会导致关断过程中集电极-发射极电压尖峰和辅助发射极-发射极电压尖峰发生变化。本文根据集电极-发射极电压尖峰和辅助发射极-发射极电压尖峰,提出利用不受集电极电流和结温影响的 K 因子参数来监测 IGBT 模块的键合导线疲劳。此外,基于 K 因子参数和辅助发射极-发射极电压尖峰,实现了对 IGBT 模块键合线疲劳和结温的监测。这为 IGBT 模块的可靠性评估提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of the Electron Devices Society
IEEE Journal of the Electron Devices Society Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
5.20
自引率
4.30%
发文量
124
审稿时长
9 weeks
期刊介绍: The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信