{"title":"An Online Monitoring Method for Bond Wire Fatigue in IGBT Module","authors":"Hongtao Liu;Fei Wang;Xiaokang Zhang;Weiyi Xia;Lintao Ren","doi":"10.1109/JEDS.2024.3399554","DOIUrl":null,"url":null,"abstract":"IGBT modules are core components of power electronic converters, and their reliability has gained significant attention. Among various reliability concerns, bond wire fatigue is a prominent issue. Bond wire fatigue can alter the electrical characteristics of IGBT modules, affecting the turn-off process of the IGBT. Consequently, it leads to changes in the collector-emitter voltage spike and the auxiliary emitter-emitter voltage spike during the turn-off process. The paper proposes the utilization of the K factor parameter which is not affected by the collector current and junction temperature, based on the collector-emitter voltage spike and the auxiliary emitter-emitter voltage spike, for bond wire fatigue monitoring of IGBT modules. Additionally, the monitoring of bond wire fatigue and junction temperature of IGBT modules was achieved based on the K factor parameter and the auxiliary emitter-emitter voltage spike. This provides a basis for the reliability assessment of IGBT modules.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10529136","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10529136/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
IGBT modules are core components of power electronic converters, and their reliability has gained significant attention. Among various reliability concerns, bond wire fatigue is a prominent issue. Bond wire fatigue can alter the electrical characteristics of IGBT modules, affecting the turn-off process of the IGBT. Consequently, it leads to changes in the collector-emitter voltage spike and the auxiliary emitter-emitter voltage spike during the turn-off process. The paper proposes the utilization of the K factor parameter which is not affected by the collector current and junction temperature, based on the collector-emitter voltage spike and the auxiliary emitter-emitter voltage spike, for bond wire fatigue monitoring of IGBT modules. Additionally, the monitoring of bond wire fatigue and junction temperature of IGBT modules was achieved based on the K factor parameter and the auxiliary emitter-emitter voltage spike. This provides a basis for the reliability assessment of IGBT modules.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.