Ayman A. Abdelaziz, Yoshiyuki Teramoto, Dae-Yeong Kim, Tomohiro Nozaki, Hyun-Ha Kim
{"title":"Critical Considerations in Power Measurements for the Precise Estimation of Energy Costs in Plasma NOx Synthesis","authors":"Ayman A. Abdelaziz, Yoshiyuki Teramoto, Dae-Yeong Kim, Tomohiro Nozaki, Hyun-Ha Kim","doi":"10.1007/s11090-024-10472-w","DOIUrl":null,"url":null,"abstract":"<div><p>The great advantage of plasma technology in harnessing abundant clean energy for electrifying and decentralizing the chemical industry holds the promise of attaining carbon neutrality. Therefore, recent research efforts have been dedicated to reducing the energy costs of plasma processes to facilitate the commercialization of this technology. However, it has been noted an inconsistency in reporting energy costs across the literature resulted from inaccurate estimation of power consumption within the system, leading to the misevaluation of the process, its underlying mechanism, and the significance of critical factors. This study comprehensively addresses these challenges by discussing and refining methods for estimating power consumption in a plasma system. Insights are drawn from our ongoing research in plasma NO<sub><i>x</i></sub> synthesis, specifically a thorough analysis of the discharge dynamics in a recently developed reactor “high-frequency spark discharge” using a high-speed camera, ICCD camera, and high-performance oscilloscope at various pulse widths of the applied voltage. The investigation revealed the importance of accounting for the post-spark period in the voltage cycle during power estimation, as it demonstrates an influence on NO<sub><i>x</i></sub> synthesis. Furthermore, the study highlighted and addressed critical errors in power measurement and energy cost estimation in the literature. It is found that a significant error, exceeding ± 70%, arises from overlooking signals delay in the setup and improper adjustment of oscilloscope functions, particularly channel impedance, data averaging, bandwidth, and sampling rate. This paper serves as a valuable guide towards establishing standardized measurements toward the precise estimation of energy costs in plasma processes.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-024-10472-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The great advantage of plasma technology in harnessing abundant clean energy for electrifying and decentralizing the chemical industry holds the promise of attaining carbon neutrality. Therefore, recent research efforts have been dedicated to reducing the energy costs of plasma processes to facilitate the commercialization of this technology. However, it has been noted an inconsistency in reporting energy costs across the literature resulted from inaccurate estimation of power consumption within the system, leading to the misevaluation of the process, its underlying mechanism, and the significance of critical factors. This study comprehensively addresses these challenges by discussing and refining methods for estimating power consumption in a plasma system. Insights are drawn from our ongoing research in plasma NOx synthesis, specifically a thorough analysis of the discharge dynamics in a recently developed reactor “high-frequency spark discharge” using a high-speed camera, ICCD camera, and high-performance oscilloscope at various pulse widths of the applied voltage. The investigation revealed the importance of accounting for the post-spark period in the voltage cycle during power estimation, as it demonstrates an influence on NOx synthesis. Furthermore, the study highlighted and addressed critical errors in power measurement and energy cost estimation in the literature. It is found that a significant error, exceeding ± 70%, arises from overlooking signals delay in the setup and improper adjustment of oscilloscope functions, particularly channel impedance, data averaging, bandwidth, and sampling rate. This paper serves as a valuable guide towards establishing standardized measurements toward the precise estimation of energy costs in plasma processes.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.