Solid-state fermentation using wheat bran to produce glucose syrup and functional cereal bars.

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Bioprocess and Biosystems Engineering Pub Date : 2024-07-01 Epub Date: 2024-05-13 DOI:10.1007/s00449-024-03032-1
Célia Cristina Malaguti Figueiredo, Filipe Oliveira Granero, Luciana Pereira Silva, Ilca Fabiane Amâncio Nogueira, Joyce Faria de Souza, Bruna Escaramboni, Pedro de Oliva Neto, Regildo Márcio Gonçalves da Silva
{"title":"Solid-state fermentation using wheat bran to produce glucose syrup and functional cereal bars.","authors":"Célia Cristina Malaguti Figueiredo, Filipe Oliveira Granero, Luciana Pereira Silva, Ilca Fabiane Amâncio Nogueira, Joyce Faria de Souza, Bruna Escaramboni, Pedro de Oliva Neto, Regildo Márcio Gonçalves da Silva","doi":"10.1007/s00449-024-03032-1","DOIUrl":null,"url":null,"abstract":"<p><p>Wheat bran is one of the most abundant by-products from grain milling, which can be used as substrate for solid-state fermentation (SSF) to obtain enzymes able to convert this agro-industrial waste into glucose syrup, which in turn can be applied for the production of different food products. The present study aimed to determine centesimal composition of wheat bran, obtain enzymatic extract that converts wheat bran into wheat glucose syrup (WGS), produce rice flakes cereal bars (RFCB), and evaluate their nutritional composition and the presence of functional compounds, as well as their antioxidant potential. Determination of centesimal composition of wheat bran demonstrated its nutritional potential. Enzymatic extract was obtained and it converted wheat bran into WGS, which were applied to rice flakes producing RFCB. These cereal bars proved to be a source of dietary fiber (1.8 g) and soluble protein (7.2 g) while RCFB produced with corn glucose syrup did not present these nutritional components. In addition, RFCB produced with WGS showed polyphenolic compounds, among them flavonoids, which exhibited antioxidant activity by DPPH and ABTS radical scavenging (47.46% and 711.89 μM Trolox Equivalent/g, respectively), and iron ion reduction (71.70 μM Trolox equivalent/g). Final product showed a decrease in caloric value and sodium content. Therefore, the present study showed that the bioprocess of SSF yields a nutritional, ecological, and functional food product, which might be of great interest for food industry, adding nutritional and functional value to a well-stablished product.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1081-1094"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-03032-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Wheat bran is one of the most abundant by-products from grain milling, which can be used as substrate for solid-state fermentation (SSF) to obtain enzymes able to convert this agro-industrial waste into glucose syrup, which in turn can be applied for the production of different food products. The present study aimed to determine centesimal composition of wheat bran, obtain enzymatic extract that converts wheat bran into wheat glucose syrup (WGS), produce rice flakes cereal bars (RFCB), and evaluate their nutritional composition and the presence of functional compounds, as well as their antioxidant potential. Determination of centesimal composition of wheat bran demonstrated its nutritional potential. Enzymatic extract was obtained and it converted wheat bran into WGS, which were applied to rice flakes producing RFCB. These cereal bars proved to be a source of dietary fiber (1.8 g) and soluble protein (7.2 g) while RCFB produced with corn glucose syrup did not present these nutritional components. In addition, RFCB produced with WGS showed polyphenolic compounds, among them flavonoids, which exhibited antioxidant activity by DPPH and ABTS radical scavenging (47.46% and 711.89 μM Trolox Equivalent/g, respectively), and iron ion reduction (71.70 μM Trolox equivalent/g). Final product showed a decrease in caloric value and sodium content. Therefore, the present study showed that the bioprocess of SSF yields a nutritional, ecological, and functional food product, which might be of great interest for food industry, adding nutritional and functional value to a well-stablished product.

Abstract Image

利用麦麸进行固态发酵,生产葡萄糖浆和功能性谷物棒。
麦麸是谷物碾磨过程中产生的最丰富的副产品之一,可用作固态发酵(SSF)的底物,以获得能够将这种农用工业废物转化为葡萄糖浆的酶,进而可用于生产不同的食品。本研究旨在确定麦麸的最高成分,获得将麦麸转化为小麦葡萄糖浆(WGS)的酶提取物,生产米片谷物棒(RFCB),并评估其营养成分、功能化合物的存在及其抗氧化潜力。麦麸百分含量的测定证明了其营养潜力。获得的酶提取物可将麦麸转化为 WGS,并将其应用于生产 RFCB 的米片中。这些谷物棒被证明是膳食纤维(1.8 克)和可溶性蛋白质(7.2 克)的来源,而用玉米葡萄糖浆生产的 RCFB 没有这些营养成分。此外,用 WGS 生产的 RFCB 显示出多酚化合物,其中包括类黄酮,通过 DPPH 和 ABTS 自由基清除(分别为 47.46% 和 711.89 μM Trolox 当量/克)和铁离子还原(71.70 μM Trolox 当量/克)显示出抗氧化活性。最终产品的热值和钠含量均有所下降。因此,本研究表明,SSF 的生物工艺可产生一种营养、生态和功能性食品,这可能对食品工业具有重大意义,可为一种成熟的产品增加营养和功能价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioprocess and Biosystems Engineering
Bioprocess and Biosystems Engineering 工程技术-工程:化工
CiteScore
7.90
自引率
2.60%
发文量
147
审稿时长
2.6 months
期刊介绍: Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes. Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged. The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信