An Ultra-soft Thermal Diode

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yunsong Pang , Junhong Li , Zhibin Wen , Ting Liang , Shan Gao , Min Yang , Dezhao Huang , Jianbin Xu , Tengfei Luo , Xiaoliang Zeng , Rong Sun
{"title":"An Ultra-soft Thermal Diode","authors":"Yunsong Pang ,&nbsp;Junhong Li ,&nbsp;Zhibin Wen ,&nbsp;Ting Liang ,&nbsp;Shan Gao ,&nbsp;Min Yang ,&nbsp;Dezhao Huang ,&nbsp;Jianbin Xu ,&nbsp;Tengfei Luo ,&nbsp;Xiaoliang Zeng ,&nbsp;Rong Sun","doi":"10.1016/j.mtphys.2024.101450","DOIUrl":null,"url":null,"abstract":"<div><p>The controlling of heat flow direction stands as a prominent methodological approach within the domain of thermal management, and this can be accomplished through the utilization of thermal diodes. However, if the thermal diode lacks mechanical compliance, hindering its intimate contact with heat source/sink surfaces, the thermal rectification performance is limited. In this work, we propose a method to solve the mechanical compliance problem that is introducing phase change material (PCM) consisting of dual alkanes (hexadecane and paraffine wax) and polyurethane to fabricate the heterojunction thermal diode. The fabricated thermal diode exhibits an ultra-soft mechanical feature, with a low elastic modulus of 0.4 KPa and &gt;300 % elongation until failure – the best values reported to date for thermal diodes. The measured thermal rectification factor is as high as 1.42 – in line with the theoretical model prediction. Molecular dynamic simulations reveal that the thermal rectification mechanism of the PCM-based thermal diode originates from the crystal-amorphous phase transition of the hexadecane terminal as the temperature bias flips. Therefore, the heat flow in the forward direction is greater than the flux in the reverse direction. A series of experiments and finite element analyses are employed to verify the feasibility of thermal diodes for applications in real contexts like the civil engineering.</p></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":10.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324001263","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The controlling of heat flow direction stands as a prominent methodological approach within the domain of thermal management, and this can be accomplished through the utilization of thermal diodes. However, if the thermal diode lacks mechanical compliance, hindering its intimate contact with heat source/sink surfaces, the thermal rectification performance is limited. In this work, we propose a method to solve the mechanical compliance problem that is introducing phase change material (PCM) consisting of dual alkanes (hexadecane and paraffine wax) and polyurethane to fabricate the heterojunction thermal diode. The fabricated thermal diode exhibits an ultra-soft mechanical feature, with a low elastic modulus of 0.4 KPa and >300 % elongation until failure – the best values reported to date for thermal diodes. The measured thermal rectification factor is as high as 1.42 – in line with the theoretical model prediction. Molecular dynamic simulations reveal that the thermal rectification mechanism of the PCM-based thermal diode originates from the crystal-amorphous phase transition of the hexadecane terminal as the temperature bias flips. Therefore, the heat flow in the forward direction is greater than the flux in the reverse direction. A series of experiments and finite element analyses are employed to verify the feasibility of thermal diodes for applications in real contexts like the civil engineering.

超软热敏二极管
控制热流方向是热管理领域的一个重要方法,可以通过使用导热二极管来实现。然而,如果热敏二极管缺乏机械顺应性,阻碍了它与热源/散热器表面的亲密接触,热整流性能就会受到限制。在这项工作中,我们提出了一种解决机械顺应性问题的方法,即引入由双烷烃(十六烷和石蜡)和聚氨酯组成的相变材料(PCM)来制造异质结导热二极管。制成的热敏二极管具有超软的机械特性,弹性模量低至 0.4 千帕,伸长率为 300%,是迄今为止热敏二极管的最佳值。测得的热整流因子高达 1.42,与理论模型的预测值相符。分子动力学模拟显示,基于 PCM 的热敏二极管的热整流机制源于十六烷端子在温度偏置翻转时的晶体-非晶相变。因此,正向热流大于反向热流。通过一系列实验和有限元分析,验证了热敏二极管在土木工程等实际环境中应用的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信