Delu Zheng, Chenli Cui, Chengsong Ye, Chen Shao, Xiujing Zha, Ying Xu, Xu Liu, Can Wang
{"title":"Coenzyme Q10 prevents RANKL-induced osteoclastogenesis by promoting autophagy via inactivation of the PI3K/AKT/mTOR and MAPK pathways.","authors":"Delu Zheng, Chenli Cui, Chengsong Ye, Chen Shao, Xiujing Zha, Ying Xu, Xu Liu, Can Wang","doi":"10.1590/1414-431X2024e13474","DOIUrl":null,"url":null,"abstract":"<p><p>Coenzyme Q10 (CoQ10) is a potent antioxidant that is implicated in the inhibition of osteoclastogenesis, but the underlying mechanism has not been determined. We explored the underlying molecular mechanisms involved in this process. RAW264.7 cells received receptor activator of NF-κB ligand (RANKL) and CoQ10, after which the differentiation and viability of osteoclasts were assessed. After the cells were treated with CoQ10 and/or H2O2 and RANKL, the levels of reactive oxygen species (ROS) and proteins involved in the PI3K/AKT/mTOR and MAPK pathways and autophagy were tested. Moreover, after the cells were pretreated with or without inhibitors of the two pathways or with the mitophagy agonist, the levels of autophagy-related proteins and osteoclast markers were measured. CoQ10 significantly decreased the number of TRAP-positive cells and the level of ROS but had no significant impact on cell viability. The relative phosphorylation levels of PI3K, AKT, mTOR, ERK, and p38 were significantly reduced, but the levels of FOXO3/LC3/Beclin1 were significantly augmented. Moreover, the levels of FOXO3/LC3/Beclin1 were significantly increased by the inhibitors and mitophagy agonist, while the levels of osteoclast markers showed the opposite results. Our data showed that CoQ10 prevented RANKL-induced osteoclastogenesis by promoting autophagy via inactivation of the PI3K/AKT/mTOR and MAPK pathways in RAW264.7 cells.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11085036/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1590/1414-431X2024e13474","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Coenzyme Q10 (CoQ10) is a potent antioxidant that is implicated in the inhibition of osteoclastogenesis, but the underlying mechanism has not been determined. We explored the underlying molecular mechanisms involved in this process. RAW264.7 cells received receptor activator of NF-κB ligand (RANKL) and CoQ10, after which the differentiation and viability of osteoclasts were assessed. After the cells were treated with CoQ10 and/or H2O2 and RANKL, the levels of reactive oxygen species (ROS) and proteins involved in the PI3K/AKT/mTOR and MAPK pathways and autophagy were tested. Moreover, after the cells were pretreated with or without inhibitors of the two pathways or with the mitophagy agonist, the levels of autophagy-related proteins and osteoclast markers were measured. CoQ10 significantly decreased the number of TRAP-positive cells and the level of ROS but had no significant impact on cell viability. The relative phosphorylation levels of PI3K, AKT, mTOR, ERK, and p38 were significantly reduced, but the levels of FOXO3/LC3/Beclin1 were significantly augmented. Moreover, the levels of FOXO3/LC3/Beclin1 were significantly increased by the inhibitors and mitophagy agonist, while the levels of osteoclast markers showed the opposite results. Our data showed that CoQ10 prevented RANKL-induced osteoclastogenesis by promoting autophagy via inactivation of the PI3K/AKT/mTOR and MAPK pathways in RAW264.7 cells.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.