Graphic analysis of various sulfur applications on safflower fatty acids profile.

Biotechnologia Pub Date : 2024-03-29 eCollection Date: 2024-01-01 DOI:10.5114/bta.2024.135640
Naser Sabaghnia, Mostafa Fattahi, Mohsen Janmohammadi, Amin Abbasi
{"title":"Graphic analysis of various sulfur applications on safflower fatty acids profile.","authors":"Naser Sabaghnia, Mostafa Fattahi, Mohsen Janmohammadi, Amin Abbasi","doi":"10.5114/bta.2024.135640","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we examined the effects of seven different sulfur treatments on safflower seeds. The treatments included: no sulfur application (S0), 25 kg/ha of pure bulk sulfur (S25), 50 kg/ha of pure bulk sulfur (S50), 25 kg/ha of sulfur phosphate (Sp25), 50 kg/ha of sulfur phosphate (Sp50), 25 kg/ha of zinc sulfate (Zs25), and 50 kg/ha of zinc sulfate (Zs50). Our evaluation covered various seed quality attributes, including ash percentage (ASH), oil percentage (OIL), and protein percentage (PRO). Additionally, we analyzed the fatty acid composition, including palmitic acid 16 : 0 (PAL), stearic acid 18 : 0 (STE), oleic acid 18 : 1 (OLE), linoleic acid 18 : 2 (LINL), arachidic acid 20 : 0 (ARA), and linolenic acid 18 : 3 (LINN). The vector-view of the biplot illustrated positive associations among the fatty acids STE, PAL, and OLE, whereas ASH exhibited negative associations with OIL, LINL, and LINN. The polygon-view graph was divided into four sectors, with the genotype S50 emerging as the top performer for attributes such as OIL, PRO, LINL, ARA, and LINN. Treatment Zs50 occupied the vertex of another sector and displayed the highest values for palmitic acid PAL, STE, and OLE, while treatment S0 was positioned at the vertex of the next sector, characterized by its high ASH content. By utilizing the ideal tester tool of treatment by trait biplot, we identified OIL as the desirable trait that most effectively represented the data. The qualitative properties of safflower oil were notably influenced by sulfur application, with treatment S50 proving to be the most effective in enhancing these properties.</p>","PeriodicalId":94371,"journal":{"name":"Biotechnologia","volume":"105 1","pages":"33-39"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11020149/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5114/bta.2024.135640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we examined the effects of seven different sulfur treatments on safflower seeds. The treatments included: no sulfur application (S0), 25 kg/ha of pure bulk sulfur (S25), 50 kg/ha of pure bulk sulfur (S50), 25 kg/ha of sulfur phosphate (Sp25), 50 kg/ha of sulfur phosphate (Sp50), 25 kg/ha of zinc sulfate (Zs25), and 50 kg/ha of zinc sulfate (Zs50). Our evaluation covered various seed quality attributes, including ash percentage (ASH), oil percentage (OIL), and protein percentage (PRO). Additionally, we analyzed the fatty acid composition, including palmitic acid 16 : 0 (PAL), stearic acid 18 : 0 (STE), oleic acid 18 : 1 (OLE), linoleic acid 18 : 2 (LINL), arachidic acid 20 : 0 (ARA), and linolenic acid 18 : 3 (LINN). The vector-view of the biplot illustrated positive associations among the fatty acids STE, PAL, and OLE, whereas ASH exhibited negative associations with OIL, LINL, and LINN. The polygon-view graph was divided into four sectors, with the genotype S50 emerging as the top performer for attributes such as OIL, PRO, LINL, ARA, and LINN. Treatment Zs50 occupied the vertex of another sector and displayed the highest values for palmitic acid PAL, STE, and OLE, while treatment S0 was positioned at the vertex of the next sector, characterized by its high ASH content. By utilizing the ideal tester tool of treatment by trait biplot, we identified OIL as the desirable trait that most effectively represented the data. The qualitative properties of safflower oil were notably influenced by sulfur application, with treatment S50 proving to be the most effective in enhancing these properties.

各种硫磺应用对红花脂肪酸谱的图解分析。
在这项研究中,我们考察了七种不同硫磺处理对红花种子的影响。这些处理包括:不施硫磺(S0)、每公顷 25 千克纯硫磺(S25)、每公顷 50 千克纯硫磺(S50)、每公顷 25 千克硫磺磷酸盐(Sp25)、每公顷 50 千克硫磺磷酸盐(Sp50)、每公顷 25 千克硫酸锌(Zs25)和每公顷 50 千克硫酸锌(Zs50)。我们的评估涵盖了各种种子质量属性,包括灰分百分比(ASH)、油分百分比(OIL)和蛋白质百分比(PRO)。此外,我们还分析了脂肪酸组成,包括棕榈酸 16 :0(PAL)、硬脂酸 18 :0(STE)、油酸 18 :1(OLE)、亚油酸 18 : 2(LINL)、花生四烯酸 20 : 0(ARA)和亚麻酸 18 : 3(LINN):3 (LINN)。双向图的矢量视图显示脂肪酸 STE、PAL 和 OLE 之间存在正相关,而 ASH 与 OIL、LINL 和 LINN 之间存在负相关。多边形视图图分为四个部分,基因型 S50 在 OIL、PRO、LINL、ARA 和 LINN 等属性方面表现最佳。处理 Zs50 位于另一个扇形的顶点,显示出最高的棕榈酸 PAL、STE 和 OLE 值,而处理 S0 则位于下一个扇形的顶点,其特点是 ASH 含量高。通过利用理想的测试工具--性状双图处理,我们发现油是最能有效反映数据的理想性状。红花油的质量特性明显受到施硫的影响,其中 S50 处理对提高这些特性最为有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信