{"title":"Argyreia nervosa-driven biosynthesis of Cu-Ag bimetallic nanoparticles from plant leaves extract unveils enhanced antibacterial properties.","authors":"Parvathalu Kalakonda, Rajitha Kathi, Merlinsheeba Gali Ligory, Naveenkumar Dabbeta, Naveenkumar Madipoju, Soujanyalakshmi Mynepally, Vijay Morampudi, Sreenivas Banne, Pritam Mandal, Ramu Naidu Savu, Sarvani Jowhar Khanam, Murali Banavoth, Naina Vinodini Sudarsanam Eve, Bala Bhaskar Podila","doi":"10.1007/s00449-024-03020-5","DOIUrl":null,"url":null,"abstract":"<p><p>Our study specifically explores the biosynthesis of copper-silver bimetallic nanoparticles (Cu-Ag BMNPs) using Argyreia nervosa (AN) plant leaf green extract as a versatile agent for capping, reducing, and stabilizing. This biosynthesis method is characterized by its simplicity and cost-effectiveness, utilizing silver nitrate (AgNO<sub>3</sub>) and cupric oxide (CuO) as precursor materials. Our comprehensive characterization of the Cu-Ag BMNPs, employing techniques such as X-ray diffraction (XRD), UV-Vis spectrometry, scanning electron microscopy (SEM), Zetasizer, and Fourier transformed infrared spectrometry (FTIR). FTIR analysis reveals biofunctional groups and chemical bands, while SEM and XRD analyses provide morphological and structural details. To evaluate the antimicrobial properties of the Cu-Ag BMNPs, we conducted disc diffusion and minimum inhibitory concentration (MIC) assays against Escherichia coli (E. coli), with results compared to the standard gentamicin antibiotic. It is observed that the 2% and 5% CuO concentrations of AN Cu-Ag BMNPs exhibit substantial antibacterial activity in comparison to AN extract when tested on EPEC. Among these, the Cu-Ag BMNPs at a 2% concentration demonstrate higher antibacterial activity, potentially attributed to the enhanced dispersion of BMNPs facilitated by the lower CuO doping concentration. These two assays showcased the improved antimicrobial activity of Cu-Ag BMNPs, highlighting their synergistic effect, characterized by high MIC values and a broad zone of inhibition in the disc diffusion tests against E. coli. These results emphasize the significant antibacterial potential of the synthesized BMNPs, with a medicinal plant AN leaf extract playing a pivotal role in enhancing antibacterial activity.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-03020-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Our study specifically explores the biosynthesis of copper-silver bimetallic nanoparticles (Cu-Ag BMNPs) using Argyreia nervosa (AN) plant leaf green extract as a versatile agent for capping, reducing, and stabilizing. This biosynthesis method is characterized by its simplicity and cost-effectiveness, utilizing silver nitrate (AgNO3) and cupric oxide (CuO) as precursor materials. Our comprehensive characterization of the Cu-Ag BMNPs, employing techniques such as X-ray diffraction (XRD), UV-Vis spectrometry, scanning electron microscopy (SEM), Zetasizer, and Fourier transformed infrared spectrometry (FTIR). FTIR analysis reveals biofunctional groups and chemical bands, while SEM and XRD analyses provide morphological and structural details. To evaluate the antimicrobial properties of the Cu-Ag BMNPs, we conducted disc diffusion and minimum inhibitory concentration (MIC) assays against Escherichia coli (E. coli), with results compared to the standard gentamicin antibiotic. It is observed that the 2% and 5% CuO concentrations of AN Cu-Ag BMNPs exhibit substantial antibacterial activity in comparison to AN extract when tested on EPEC. Among these, the Cu-Ag BMNPs at a 2% concentration demonstrate higher antibacterial activity, potentially attributed to the enhanced dispersion of BMNPs facilitated by the lower CuO doping concentration. These two assays showcased the improved antimicrobial activity of Cu-Ag BMNPs, highlighting their synergistic effect, characterized by high MIC values and a broad zone of inhibition in the disc diffusion tests against E. coli. These results emphasize the significant antibacterial potential of the synthesized BMNPs, with a medicinal plant AN leaf extract playing a pivotal role in enhancing antibacterial activity.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.