An investigation into the thermal surface contact resistance, fin width and temperature on negative bias temperature instability during self-heating

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Yan Liu , Yanhua Ma , Chong Pan
{"title":"An investigation into the thermal surface contact resistance, fin width and temperature on negative bias temperature instability during self-heating","authors":"Yan Liu ,&nbsp;Yanhua Ma ,&nbsp;Chong Pan","doi":"10.1016/j.microrel.2024.115414","DOIUrl":null,"url":null,"abstract":"<div><p>This work investigates the impacts of the thermal surface contact resistance (SR), fin width and temperature on the negative bias temperature instability (NBTI) during self-heating based on 14 nm p-FinFET through technology computer-aided design (TCAD) tool. In order to promote the accuracy of simulation, the experimental data are used to calibrate the TCAD results. The simulation results reveal that as SR increases, the lattice temperature rises by 20.07 %, which leads to a 15.84 % decrease of the carrier mobility and finally a reduction of the saturation current by 5.07 %. Moreover, as W<sub>Fin</sub> decreases from 8 nm to 2 nm, the device threshold voltage increases by 15.41 %, resulting in that the saturation current reduces by 19.06 %. Besides, with an increase of the ambient temperature from 300 K to 500 K, the lattice temperature and trapped charge rise by 60.48 % and 12.53 %, respectively, which eventually leads to an 18.13 % decrease of the saturation current.</p></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":"157 ","pages":"Article 115414"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026271424000945","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This work investigates the impacts of the thermal surface contact resistance (SR), fin width and temperature on the negative bias temperature instability (NBTI) during self-heating based on 14 nm p-FinFET through technology computer-aided design (TCAD) tool. In order to promote the accuracy of simulation, the experimental data are used to calibrate the TCAD results. The simulation results reveal that as SR increases, the lattice temperature rises by 20.07 %, which leads to a 15.84 % decrease of the carrier mobility and finally a reduction of the saturation current by 5.07 %. Moreover, as WFin decreases from 8 nm to 2 nm, the device threshold voltage increases by 15.41 %, resulting in that the saturation current reduces by 19.06 %. Besides, with an increase of the ambient temperature from 300 K to 500 K, the lattice temperature and trapped charge rise by 60.48 % and 12.53 %, respectively, which eventually leads to an 18.13 % decrease of the saturation current.

自加热过程中热表面接触电阻、翅片宽度和温度对负偏置温度不稳定性的影响研究
本研究通过技术计算机辅助设计(TCAD)工具,研究了热表面接触电阻(SR)、鳍片宽度和温度对基于 14 nm p-FinFET 的自加热过程中负偏置温度不稳定性(NBTI)的影响。为了提高仿真的准确性,实验数据被用来校准 TCAD 的结果。模拟结果显示,随着 SR 的增加,晶格温度上升了 20.07%,从而导致载流子迁移率下降了 15.84%,饱和电流最终下降了 5.07%。此外,当 WFin 从 8 纳米降低到 2 纳米时,器件阈值电压增加了 15.41%,导致饱和电流降低了 19.06%。此外,随着环境温度从 300 K 上升到 500 K,晶格温度和捕获电荷分别上升了 60.48 % 和 12.53 %,最终导致饱和电流下降了 18.13 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microelectronics Reliability
Microelectronics Reliability 工程技术-工程:电子与电气
CiteScore
3.30
自引率
12.50%
发文量
342
审稿时长
68 days
期刊介绍: Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged. Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信