Zhen Deng;Xiaoxiao Wei;Chuanchuan Pan;Guotao Li;Ying Hu
{"title":"Shared Control of Tendon-Driven Continuum Robots Using Visibility-Guaranteed Optimization for Endoscopic Surgery","authors":"Zhen Deng;Xiaoxiao Wei;Chuanchuan Pan;Guotao Li;Ying Hu","doi":"10.1109/TMRB.2024.3381371","DOIUrl":null,"url":null,"abstract":"Tendon-driven continuum robots (TDCRs) with mechanical compliance have gained popularity in natural orifice transluminal endoscopic surgery (NOTES). Teleoperation problems of the TDCRs involve performance objectives in addition to the visibility constraint. Handling the coupling between potentially conflicting objectives and the visibility constraint remains challenging for surgeons when operating TDCRs. This paper presents a shared control method to assist in the teleoperation of the TDCRs, which guarantees visual targets remain within the field of view (FoV) of the TDCR. The visibility constraint is explicitly defined using a zeroing control barrier function, which is specified in terms of the forward invariance of a visible set. To ensure accuracy, the Jacobian matrix of the system is approximated online using sensing data. Then, the visibility constraint, along with the robot’s physical constraints, is integrated into a quadratic program (QP) framework. This allows for the optimization of the control input of the operator subject to constraints, thus preserving visibility. Finally, simulations and experiments were conducted to demonstrate the effectiveness of the proposed approach under two teleoperation modes. The results show that the proposed method achieved a reduction of approximately 70% in ITP and 43% in MAE compared to direct teleoperation.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10478775/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tendon-driven continuum robots (TDCRs) with mechanical compliance have gained popularity in natural orifice transluminal endoscopic surgery (NOTES). Teleoperation problems of the TDCRs involve performance objectives in addition to the visibility constraint. Handling the coupling between potentially conflicting objectives and the visibility constraint remains challenging for surgeons when operating TDCRs. This paper presents a shared control method to assist in the teleoperation of the TDCRs, which guarantees visual targets remain within the field of view (FoV) of the TDCR. The visibility constraint is explicitly defined using a zeroing control barrier function, which is specified in terms of the forward invariance of a visible set. To ensure accuracy, the Jacobian matrix of the system is approximated online using sensing data. Then, the visibility constraint, along with the robot’s physical constraints, is integrated into a quadratic program (QP) framework. This allows for the optimization of the control input of the operator subject to constraints, thus preserving visibility. Finally, simulations and experiments were conducted to demonstrate the effectiveness of the proposed approach under two teleoperation modes. The results show that the proposed method achieved a reduction of approximately 70% in ITP and 43% in MAE compared to direct teleoperation.