Yanding Qin;Yueyang Shi;Longxin Wang;Hongpeng Wang;Jianda Han
{"title":"Design, Modeling and Optimization of a Magnetic Resonance Conditional 3-RRR Spherical Parallel Robot for Neurosurgery","authors":"Yanding Qin;Yueyang Shi;Longxin Wang;Hongpeng Wang;Jianda Han","doi":"10.1109/TMRB.2024.3387114","DOIUrl":null,"url":null,"abstract":"In neurosurgery, magnetic resonance (MR) imaging is extensively utilized for preoperative diagnosis and postoperative evaluation due to its superior soft tissue contrast. However, the strong magnetic field poses a challenge to the real-time utilization of MR for intraoperative navigation. To facilitate neurosurgery in the MR environment, this paper develops a MR conditional robot featuring nonferrous materials and ultrasonic motor actuation. The robot consists of a 3-degree-of-freedom (3-DOF) translational module and a 3-DOF remote center of motion (RCM) module. The RCM module incorporates a 3-RRR spherical parallel mechanism. The mechanical design and kinematic modeling of the RCM module is completed. This paper further conducts the optimization for the RCM module. Additionally, a path-planning algorithm, focusing on the maximization of dexterity, is introduced, and the feasible workspace of the optimized RCM module is evaluated. A prototype is fabricated, and the orientation repeatability of the RCM module is measured to be 0.055±0.0016°, and the absolute orientation error is 2.05±0.019°. Needle insertion experiments are performed on an agarose phantom to evaluate the feasibility of the robot. The impact on signal-to-noise ratio in MRI images caused by the robot is less than 4%, indicating a highly promising applicability in MR conditional neurosurgery.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"6 2","pages":"556-566"},"PeriodicalIF":3.4000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10496503/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In neurosurgery, magnetic resonance (MR) imaging is extensively utilized for preoperative diagnosis and postoperative evaluation due to its superior soft tissue contrast. However, the strong magnetic field poses a challenge to the real-time utilization of MR for intraoperative navigation. To facilitate neurosurgery in the MR environment, this paper develops a MR conditional robot featuring nonferrous materials and ultrasonic motor actuation. The robot consists of a 3-degree-of-freedom (3-DOF) translational module and a 3-DOF remote center of motion (RCM) module. The RCM module incorporates a 3-RRR spherical parallel mechanism. The mechanical design and kinematic modeling of the RCM module is completed. This paper further conducts the optimization for the RCM module. Additionally, a path-planning algorithm, focusing on the maximization of dexterity, is introduced, and the feasible workspace of the optimized RCM module is evaluated. A prototype is fabricated, and the orientation repeatability of the RCM module is measured to be 0.055±0.0016°, and the absolute orientation error is 2.05±0.019°. Needle insertion experiments are performed on an agarose phantom to evaluate the feasibility of the robot. The impact on signal-to-noise ratio in MRI images caused by the robot is less than 4%, indicating a highly promising applicability in MR conditional neurosurgery.