Mikhail Vasilev, Robert Stephens, Meredith Muller, Selma Mededovic Thagard
{"title":"Plasma Bubble Column Reactor: A High Throughput Reactor Design for Water Treatment","authors":"Mikhail Vasilev, Robert Stephens, Meredith Muller, Selma Mededovic Thagard","doi":"10.1007/s11090-024-10470-y","DOIUrl":null,"url":null,"abstract":"<div><p>Plasma-based water treatment (PWT) is a promising technology that can degrade various emerging contaminants. However, PWT application on an industrially viable scale is hindered by the lack of an efficient reactor design that combines enhanced plasma-liquid contact with high liquid throughput. This work investigates the applicability of a bubble column gas–liquid contactor to PWT. A pulsed plasma bubble column reactor with a concentric rod-cylinder electrode configuration was used to correlate contaminant removal performance with the gas–liquid contact parameters of the bubble column. A surfactant, rhodamine B dye, and a nonsurfactant, caffeine, were used as model contaminants at µM concentration levels. The bubble column characteristics, i.e., gas holdup, bubble size distribution, and gas–liquid area, were measured as a function of superficial gas velocity using image-based methods. Degradation rates of both contaminants increased with gas flowrate. For caffeine, the increase was attributed to intensified bulk liquid mixing, while dye degradation increased due to the increased gas–liquid area. Ultimately, we show that bubble column contactors significantly improve the utilization of plasma-generated reactive species toward contaminant degradation by distributing them over a large contact area. As a result, a better match between the plasma species interfacial flux and the interfacial contaminant concentration leads to improved treatment energy efficiency. Typical degradation energy efficiencies were ~ 10 g/kWh for caffeine and ~ 60 g/kWh for rhodamine B.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-024-10470-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Plasma-based water treatment (PWT) is a promising technology that can degrade various emerging contaminants. However, PWT application on an industrially viable scale is hindered by the lack of an efficient reactor design that combines enhanced plasma-liquid contact with high liquid throughput. This work investigates the applicability of a bubble column gas–liquid contactor to PWT. A pulsed plasma bubble column reactor with a concentric rod-cylinder electrode configuration was used to correlate contaminant removal performance with the gas–liquid contact parameters of the bubble column. A surfactant, rhodamine B dye, and a nonsurfactant, caffeine, were used as model contaminants at µM concentration levels. The bubble column characteristics, i.e., gas holdup, bubble size distribution, and gas–liquid area, were measured as a function of superficial gas velocity using image-based methods. Degradation rates of both contaminants increased with gas flowrate. For caffeine, the increase was attributed to intensified bulk liquid mixing, while dye degradation increased due to the increased gas–liquid area. Ultimately, we show that bubble column contactors significantly improve the utilization of plasma-generated reactive species toward contaminant degradation by distributing them over a large contact area. As a result, a better match between the plasma species interfacial flux and the interfacial contaminant concentration leads to improved treatment energy efficiency. Typical degradation energy efficiencies were ~ 10 g/kWh for caffeine and ~ 60 g/kWh for rhodamine B.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.