S. Bousigues , L. Gajny , W. Skalli , X. Ohl , P. Tétreault , N. Hagemeister
{"title":"Evaluation of a method to quantify posture and scapula position using biplanar radiography","authors":"S. Bousigues , L. Gajny , W. Skalli , X. Ohl , P. Tétreault , N. Hagemeister","doi":"10.1016/j.medengphy.2024.104167","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Recent studies have stated the relevance of having new parameters to quantify the position and orientation of the scapula with patients standing upright. Although biplanar radiography can provide 3D reconstructions of the scapula and the spine, it is not yet possible to acquire these images with patients in the same position.</p></div><div><h3>Methods</h3><p>Two pairs of images were acquired, one for the 3D reconstruction of the spine and ribcage and one for the 3D reconstruction of the scapula. Following 3D reconstructions, scapular alignment was performed in two stages, a coarse alignment based on manual annotations of landmarks on the clavicle and pelvis, and an adjusted alignment. Clinical parameters were computed: protraction, internal rotation, tilt and upward rotation. Reproducibility was assessed on an in vivo dataset of upright biplanar radiographs<strong>.</strong> Accuracy was assessed using supine cadaveric CT-scans and digitally reconstructed radiographs.</p></div><div><h3>Findings</h3><p>The mean error was less than 2° for all clinical parameters, and the 95 % confidence interval for reproducibility ranged from 2.5° to 5.3°.</p></div><div><h3>Interpretation</h3><p>The confidence intervals were lower than the variability measured between participants for the clinical parameters assessed, which indicates that this method has the potential to detect different patterns in pathological populations.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324000687","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Recent studies have stated the relevance of having new parameters to quantify the position and orientation of the scapula with patients standing upright. Although biplanar radiography can provide 3D reconstructions of the scapula and the spine, it is not yet possible to acquire these images with patients in the same position.
Methods
Two pairs of images were acquired, one for the 3D reconstruction of the spine and ribcage and one for the 3D reconstruction of the scapula. Following 3D reconstructions, scapular alignment was performed in two stages, a coarse alignment based on manual annotations of landmarks on the clavicle and pelvis, and an adjusted alignment. Clinical parameters were computed: protraction, internal rotation, tilt and upward rotation. Reproducibility was assessed on an in vivo dataset of upright biplanar radiographs. Accuracy was assessed using supine cadaveric CT-scans and digitally reconstructed radiographs.
Findings
The mean error was less than 2° for all clinical parameters, and the 95 % confidence interval for reproducibility ranged from 2.5° to 5.3°.
Interpretation
The confidence intervals were lower than the variability measured between participants for the clinical parameters assessed, which indicates that this method has the potential to detect different patterns in pathological populations.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.