{"title":"Application of 2D Walsh-Hadamard transform in SRAM upset bitmaps processing","authors":"A.S. Pilipenko , L.S. Zubkov , M.I. Tikhonov","doi":"10.1016/j.microrel.2024.115398","DOIUrl":null,"url":null,"abstract":"<div><p>Upset bitmaps distribution features in SRAM arrays exposed by various types of pulsed ionizing radiation (X-rays, n-γ, laser-accelerated protons) were analyzed by experimental data processing with 2D Walsh-Hadamard transform, i.e. expansion of orthogonal rectangle functions on closed set basis. Using such processing with comparison to expansion on 1D Fourier or Walsh-Hadamard transform allows one to detect additional regularities in upset distribution. The presence of these regularities can be explained by voltage dropdown across integrated circuit voltage supply buses arising under pulsed radiation exposure as a result of dose rate effects. The “stripe-like” upset bitmap is explicitly observed under the pulsed X-ray exposure. In the case of pulsed complex n-γ (fission neutrons) and laser-accelerated protons exposure the dose rate effects significance and therefore the presence of any regularities in upset bitmaps are strongly device-specific. A quantitative criterion was introduced on basis of 2D Walsh-Hadamard amplitude spectra's statistical examination permitting to pick out upset bitmaps with regularities even for visually uniform upset bitmaps.</p></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026271424000787","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Upset bitmaps distribution features in SRAM arrays exposed by various types of pulsed ionizing radiation (X-rays, n-γ, laser-accelerated protons) were analyzed by experimental data processing with 2D Walsh-Hadamard transform, i.e. expansion of orthogonal rectangle functions on closed set basis. Using such processing with comparison to expansion on 1D Fourier or Walsh-Hadamard transform allows one to detect additional regularities in upset distribution. The presence of these regularities can be explained by voltage dropdown across integrated circuit voltage supply buses arising under pulsed radiation exposure as a result of dose rate effects. The “stripe-like” upset bitmap is explicitly observed under the pulsed X-ray exposure. In the case of pulsed complex n-γ (fission neutrons) and laser-accelerated protons exposure the dose rate effects significance and therefore the presence of any regularities in upset bitmaps are strongly device-specific. A quantitative criterion was introduced on basis of 2D Walsh-Hadamard amplitude spectra's statistical examination permitting to pick out upset bitmaps with regularities even for visually uniform upset bitmaps.
期刊介绍:
Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged.
Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.