{"title":"Enhanced efficiency of deep ultraviolet light-emitting diodes utilizing full-coverage Al reflector and highly reflective Ni/Rh p-electrode","authors":"Zhenxing Lv, Zhefu Liao, Shengjun Zhou","doi":"10.1088/1361-6641/ad3a92","DOIUrl":null,"url":null,"abstract":"Increasing the reflection of p-side is an effective way to improve the optoelectronic performance of flip-chip light-emitting diodes (FCLEDs). Here, we propose a full-coverage Al reflector (FAR) and a highly reflective Ni/Rh p-electrode to enhance the performance of deep ultraviolet (DUV) FCLEDs. The physical mechanism for the impact of the FAR and Ni/Rh electrode on the light extraction efficiency (LEE) is discussed theoretically. Simulations demonstrate that the combination of the FAR and Ni/Rh electrode improves the LEEs of transverse electric- and transverse magnetic-polarized light by 13.62% and 27.08%, respectively. At an injection current of 100 mA, the fabricated DUV FCLEDs with FAR and Ni/Rh electrode exhibits an external quantum efficiency of 4.01% and a wall plugging efficiency of 2.92%, which are 16.85% and 13.18% higher than those of conventional DUV FCLEDs, respectively. These results support the promise of the FAR and Ni/Rh electrode for high-power DUV LED applications.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad3a92","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing the reflection of p-side is an effective way to improve the optoelectronic performance of flip-chip light-emitting diodes (FCLEDs). Here, we propose a full-coverage Al reflector (FAR) and a highly reflective Ni/Rh p-electrode to enhance the performance of deep ultraviolet (DUV) FCLEDs. The physical mechanism for the impact of the FAR and Ni/Rh electrode on the light extraction efficiency (LEE) is discussed theoretically. Simulations demonstrate that the combination of the FAR and Ni/Rh electrode improves the LEEs of transverse electric- and transverse magnetic-polarized light by 13.62% and 27.08%, respectively. At an injection current of 100 mA, the fabricated DUV FCLEDs with FAR and Ni/Rh electrode exhibits an external quantum efficiency of 4.01% and a wall plugging efficiency of 2.92%, which are 16.85% and 13.18% higher than those of conventional DUV FCLEDs, respectively. These results support the promise of the FAR and Ni/Rh electrode for high-power DUV LED applications.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.