21T Ternary Full Adder Based on Capacitive Threshold Logic and Carbon Nanotube FETs

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Marzieh Hashemipour;Reza Faghih Mirzaee;Keivan Navi
{"title":"21T Ternary Full Adder Based on Capacitive Threshold Logic and Carbon Nanotube FETs","authors":"Marzieh Hashemipour;Reza Faghih Mirzaee;Keivan Navi","doi":"10.1109/TNANO.2024.3386825","DOIUrl":null,"url":null,"abstract":"The reduction in transistor count has long been a big challenge and an ongoing objective in the design of Ternary Full Adders (TFAs). Capacitive Threshold Logic (CTL) is a well-known logic style requiring a small number of transistors to implement a circuit. This paper presents a novel CTL TFA that utilizes only 21 transistors, three of which function as capacitors. Reducing the number of transistors can achieve a more compact adder cell with fewer internal wires. Simulations by HSPICE and 32nm CNFET technology demonstrate promising results for the new TFA compared to previous competitors. It produces the output carry at the fastest speed and also utilizes six fewer transistors and three fewer nets than its closest competitor with the fewest elements. When a comprehensive evaluation factor including delay, power, and area is considered, the proposed design exhibits a performance superiority of 45.1% and 21.4% compared to the previous top-performing CTL and non-CTL designs, respectively.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"338-345"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10495214/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The reduction in transistor count has long been a big challenge and an ongoing objective in the design of Ternary Full Adders (TFAs). Capacitive Threshold Logic (CTL) is a well-known logic style requiring a small number of transistors to implement a circuit. This paper presents a novel CTL TFA that utilizes only 21 transistors, three of which function as capacitors. Reducing the number of transistors can achieve a more compact adder cell with fewer internal wires. Simulations by HSPICE and 32nm CNFET technology demonstrate promising results for the new TFA compared to previous competitors. It produces the output carry at the fastest speed and also utilizes six fewer transistors and three fewer nets than its closest competitor with the fewest elements. When a comprehensive evaluation factor including delay, power, and area is considered, the proposed design exhibits a performance superiority of 45.1% and 21.4% compared to the previous top-performing CTL and non-CTL designs, respectively.
基于电容阈值逻辑和碳纳米管场效应晶体管的 21T 三元全加法器
长期以来,减少晶体管数量一直是设计三元全加法器(TFA)的一大挑战和持续目标。电容阈值逻辑 (CTL) 是一种著名的逻辑形式,只需少量晶体管即可实现电路。本文介绍了一种新型 CTL TFA,它只使用了 21 个晶体管,其中三个用作电容器。减少晶体管的数量可以实现更紧凑的加法器单元,同时减少内部导线。通过 HSPICE 和 32 纳米 CNFET 技术进行的仿真表明,与以前的竞争对手相比,新的 TFA 具有良好的效果。它能以最快的速度产生输出进位,而且与元件最少的最接近的竞争对手相比,使用的晶体管数量减少了 6 个,使用的网络数量减少了 3 个。考虑到延迟、功耗和面积等综合评估因素,与之前性能最好的 CTL 和非 CTL 设计相比,所提出的设计分别显示出 45.1% 和 21.4% 的性能优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信