Customer type discovery in hotel revenue management: a data mining approach

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hamed Sherafat Moula, S. Hadi Yaghoubyan, Razieh Malekhosseini, Karamollah Bagherifard
{"title":"Customer type discovery in hotel revenue management: a data mining approach","authors":"Hamed Sherafat Moula, S. Hadi Yaghoubyan, Razieh Malekhosseini, Karamollah Bagherifard","doi":"10.1057/s41272-024-00474-w","DOIUrl":null,"url":null,"abstract":"<p>Demand estimation is a fundamental component of revenue management systems. The demand for a product can be ascertained from the customers who purchase it. Identifying customer types in this context is a challenging endeavor, recently resolved using meta-heuristic and mathematical techniques. Meta-heuristics leverage the scarcity of data in the search space, commencing with random samples and employing the fitness function as a guide during operations. Our proposed approach generates the search space by incorporating supplementary data to identify valuable customer types. We employ a new period table with additional data to achieve this objective. Subsequently, we reduce the search space through data mining's clustering method and ultimately employ a greedy algorithm and fitness function to identify valuable customer types and construct our solution. To validate our approach, we compare our solution and the most recent research in this field, including genetic, memetic, and mathematical approaches. Compared to memetic methods, our results indicate that our solution has a smaller length, with a maximum reduction of 34%, and exhibits improvement in log value, with a maximum of 7%.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1057/s41272-024-00474-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Demand estimation is a fundamental component of revenue management systems. The demand for a product can be ascertained from the customers who purchase it. Identifying customer types in this context is a challenging endeavor, recently resolved using meta-heuristic and mathematical techniques. Meta-heuristics leverage the scarcity of data in the search space, commencing with random samples and employing the fitness function as a guide during operations. Our proposed approach generates the search space by incorporating supplementary data to identify valuable customer types. We employ a new period table with additional data to achieve this objective. Subsequently, we reduce the search space through data mining's clustering method and ultimately employ a greedy algorithm and fitness function to identify valuable customer types and construct our solution. To validate our approach, we compare our solution and the most recent research in this field, including genetic, memetic, and mathematical approaches. Compared to memetic methods, our results indicate that our solution has a smaller length, with a maximum reduction of 34%, and exhibits improvement in log value, with a maximum of 7%.

酒店收益管理中的客户类型发现:一种数据挖掘方法
需求评估是收益管理系统的基本组成部分。对产品的需求可以通过购买产品的客户来确定。在这种情况下,识别客户类型是一项极具挑战性的工作,最近采用元启发式和数学技术解决了这一问题。元启发式利用搜索空间中数据的稀缺性,从随机样本开始,并在操作过程中使用适合度函数作为指导。我们提出的方法通过纳入补充数据来生成搜索空间,从而识别有价值的客户类型。为实现这一目标,我们采用了一个包含额外数据的新周期表。随后,我们通过数据挖掘的聚类方法来缩小搜索空间,最终采用贪婪算法和适配函数来识别有价值的客户类型,并构建我们的解决方案。为了验证我们的方法,我们将我们的解决方案与该领域的最新研究进行了比较,包括遗传、记忆和数学方法。结果表明,与记忆法相比,我们的解决方案长度更小,最大可减少 34%,对数值也有所提高,最大可提高 7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信