An Experimentally Verified Temperature Dependent Drain Current Fluctuation Model for Low Temperature Applications

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ying Sun;Yuchen Gu;Jing Wan;Xiao Yu;Bing Chen;Dawei Gao;Ran Cheng;Genquan Han
{"title":"An Experimentally Verified Temperature Dependent Drain Current Fluctuation Model for Low Temperature Applications","authors":"Ying Sun;Yuchen Gu;Jing Wan;Xiao Yu;Bing Chen;Dawei Gao;Ran Cheng;Genquan Han","doi":"10.1109/JEDS.2024.3388840","DOIUrl":null,"url":null,"abstract":"In this work, an accurate temperature-dependent drain current \n<inline-formula> <tex-math>$I_{\\mathrm { D}}$ </tex-math></inline-formula>\n fluctuation model valid from 10 to 300 K was proposed for 18 nm ultra-thin body and buried oxide (UTBB) n-channel field effect transistors (n-FETs). The temperature dependence of \n<inline-formula> <tex-math>$I_{\\mathrm { D}}$ </tex-math></inline-formula>\n fluctuation was characterized and investigated from 300 K down to 10 K. In moderate inversion mode, \n<inline-formula> <tex-math>$I_{\\mathrm { D}}$ </tex-math></inline-formula>\n fluctuation is more severe at sub-100 K while in the strong inversion mode, it still can be overshadowed by the charge screening effect. Cryogenic virtual source (CVS) device model was used to extract and analyze the carrier density and mobility which are used in the current fluctuation model. The current fluctuation model was experimentally verified under different inversion conditions, showing it can be used to analyze and optimize the flicker noise in the low temperature (LT) circuit applications.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10499957","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10499957/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, an accurate temperature-dependent drain current $I_{\mathrm { D}}$ fluctuation model valid from 10 to 300 K was proposed for 18 nm ultra-thin body and buried oxide (UTBB) n-channel field effect transistors (n-FETs). The temperature dependence of $I_{\mathrm { D}}$ fluctuation was characterized and investigated from 300 K down to 10 K. In moderate inversion mode, $I_{\mathrm { D}}$ fluctuation is more severe at sub-100 K while in the strong inversion mode, it still can be overshadowed by the charge screening effect. Cryogenic virtual source (CVS) device model was used to extract and analyze the carrier density and mobility which are used in the current fluctuation model. The current fluctuation model was experimentally verified under different inversion conditions, showing it can be used to analyze and optimize the flicker noise in the low temperature (LT) circuit applications.
经实验验证的低温应用漏极电流随温度波动模型
在这项工作中,针对 18 nm 超薄体和埋藏氧化物 (UTBB) n 沟道场效应晶体管 (n-FET) 提出了一个精确的随温度变化的漏极电流 $I_{m\athrm { D}}$ 波动模型,该模型在 10 至 300 K 范围内有效。在中度反转模式下,$I_{\mathrm { D}}$ 波动在低于 100 K 时更为剧烈,而在强反转模式下,它仍然可以被电荷屏蔽效应所掩盖。低温虚拟源(CVS)器件模型用于提取和分析电流波动模型中使用的载流子密度和迁移率。在不同的反转条件下对电流波动模型进行了实验验证,结果表明该模型可用于分析和优化低温(LT)电路应用中的闪烁噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信