{"title":"Small-Signal and Large-Signal RF Characterization and Modeling of Low and High Voltage FinFETs for 14/16 nm Technology Node SoCs","authors":"Anirban Kar;Shivendra Singh Parihar;Jun Z. Huang;Huilong Zhang;Weike Wang;Kimihiko Imura;Yogesh Singh Chauhan","doi":"10.1109/JEDS.2024.3384008","DOIUrl":null,"url":null,"abstract":"Modern System-on-Chip (SoC) architectures necessitate low-voltage (LV) core transistors featuring excellent digital, analog, and radio frequency (RF) properties, as well as thick oxide transistors serving as robust I/O buffers and high-voltage (HV) transistors essential for efficient power management. This study presents a comprehensive DC to RF characterization, a detailed modeling strategy, and subsequent model parameter extraction for commercially produced LV and HV Fin Field Effect Transistors (FinFETs) at 14/16 nm technology. The industry-standard BSIM-CMG compact model is modified to accurately capture the characteristics of the HV FinFET devices integrated with the digital LV FinFETs for SoC applications. A detailed analysis of the DC, analog, and RF performance of LV, I/O, and HV FinFETs compared to the contemporary planar CMOS technology is performed. The large-signal performance of the device is evaluated using the developed model and validated with the measured data. Finally, a concise overview of the performance indicators associated with the modeled device is also presented.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"12 ","pages":"415-425"},"PeriodicalIF":2.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10488034","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10488034/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Modern System-on-Chip (SoC) architectures necessitate low-voltage (LV) core transistors featuring excellent digital, analog, and radio frequency (RF) properties, as well as thick oxide transistors serving as robust I/O buffers and high-voltage (HV) transistors essential for efficient power management. This study presents a comprehensive DC to RF characterization, a detailed modeling strategy, and subsequent model parameter extraction for commercially produced LV and HV Fin Field Effect Transistors (FinFETs) at 14/16 nm technology. The industry-standard BSIM-CMG compact model is modified to accurately capture the characteristics of the HV FinFET devices integrated with the digital LV FinFETs for SoC applications. A detailed analysis of the DC, analog, and RF performance of LV, I/O, and HV FinFETs compared to the contemporary planar CMOS technology is performed. The large-signal performance of the device is evaluated using the developed model and validated with the measured data. Finally, a concise overview of the performance indicators associated with the modeled device is also presented.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.