{"title":"Tungsten Trioxide Nanoparticles Modified Cuprous Oxide Film Non-Enzymatic Dopamine Sensor","authors":"Jung-Chuan Chou;Wei-Shun Chen;Po-Hui Yang;Po-Yu Kuo;Chih-Hsien Lai;Yu-Hsun Nien","doi":"10.1109/JEDS.2024.3387324","DOIUrl":null,"url":null,"abstract":"Non-enzymatic dopamine (DA) sensors are important in diagnosing and treating human diseases. However, non-enzymatic sensors frequently encounter interference from other substances, posing a challenge of poor selectivity for such sensors. Herein, we prepared tungsten trioxide nanoparticles (WO3 NPs) via a simple hydrothermal method and immobilized them onto a cuprous oxide (Cu2O) film. The results demonstrate that WO3 NPs offer improved selectivity, thus avoiding interference from other substances. The DA sensor based on the Cu2O film modified with WO3 NPs exhibits excellent DA detection performance, with a wide linear range of \n<inline-formula> <tex-math>$1~\\mu \\text{M}$ </tex-math></inline-formula>\n to 10 mM, a low limit of detection of \n<inline-formula> <tex-math>$0.21~\\mu \\text{M}$ </tex-math></inline-formula>\n, and good selectivity against common interfering substances. This non-enzymatic DA sensor features a simple structure, easy fabrication, small size, and suitability for mass production.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10496458","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10496458/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Non-enzymatic dopamine (DA) sensors are important in diagnosing and treating human diseases. However, non-enzymatic sensors frequently encounter interference from other substances, posing a challenge of poor selectivity for such sensors. Herein, we prepared tungsten trioxide nanoparticles (WO3 NPs) via a simple hydrothermal method and immobilized them onto a cuprous oxide (Cu2O) film. The results demonstrate that WO3 NPs offer improved selectivity, thus avoiding interference from other substances. The DA sensor based on the Cu2O film modified with WO3 NPs exhibits excellent DA detection performance, with a wide linear range of
$1~\mu \text{M}$
to 10 mM, a low limit of detection of
$0.21~\mu \text{M}$
, and good selectivity against common interfering substances. This non-enzymatic DA sensor features a simple structure, easy fabrication, small size, and suitability for mass production.